
Math 29: More Register Machines

April 4th, 2022

1 More Computable Functions

Lemma 1. Division is computable.

Proof: Consider the following register machine program:

Start R−
1 R+

2

R−
0

R+
3

R−
3

R+
1

Stop

e

e

e

Upon entering the program, R0 contains x and R1 contains y. We are
going to end up with x

y in R2. (This is integer division, which rounds

down if x is not a multiple of y.)

Upon entering the program, we subtract y from x while simultaneously
moving y into R3. If at any point R0 is empty, that means we end the
computation. Once R1 is empty, we add 1 to R2 to keep track of how
many times we have subtracted y from x. We then move y back into R1

to repeat the first loop. When the program stops, R2 will contain the
number of times the first loop completed, i.e. how many times y goes
into x. (Notice that the program loops infinitely if y is zero.)

1



A set X ⊆ ω is computable if either its characteristic function or its principle
function is computable.

Lemma 2. The set of even numbers is computable.

Proof: First, notice that the principal function of the set of even num-
bers is pE(n) = 2n. Therefore the following register machine computes
the principal function:

Start R−
0

R+
1 R+

1

Stop
e

Alternately, we can compute the characteristic function with the help
of the division register machine we built for the previous lemma.

Start R+
1 R+

1

R0

R1

Stop

We place 2 in R1 then copy the division machine to divide R0 by R1.
Reviewing the operation of our division machine, if R0 was odd, then
the R−

0 node will follow the empty node immediately after R−
1 activates

the second time in the first loop, so R1 contains a 0, which is the correct
value for χE(n). If R0 was even, then the R−

0 node will follow the empty
node on the first run after the first loop resets, so R1 will contain a 1
as desired.

2



Recall that, under our coding of the integers, the even numbers were the
codes for the non-negative integers. So, the previous lemma not only told us
that the set of even numbers is computable, but also that the the set of non-
negative integers is computable.

Similarly, recall that under our canonical codes for finite sets of natural num-
bers, Dn is the set of natural numbers corresponding to the binary expansion of
n. (In other words, the binary expansion of n corresponds to the characteristic
function of Dn.) Then the even numbers are the ones whose first bit in the
binary expansion is 0. This means that the even numbers correspond to the
finite sets not containing 0. Therefore, the set of finite sets not containing 0 is
computable!

Lemma 3. The factorial function n!, where 0! = 1 and n! = n ∗ (n − 1)!, is
computable.

Proof. Homework 2 Question 1.

Lemma 4. The Fibonacci function, where f(0) = f(1) = 1 and f(n) = f(n −
1) + f(n− 2), is computable.

Proof. Homework 2 Question 2.

A k-ary relation is a {0, 1}-valued function whose domain consists of k-
tuples. We think of 1 as representing “truth,” and 0 as representing “false.”
For example, the equality relation x = y is a 2-ary (or binary) relation which is
1 if x and y are the same number and 0 otherwise. We say a relation is com-
putable if this function is computable. Equivalently, we can think of a k-ary
relation as some set of k-tuples, with those tuples that satisfy the relation being
in the set and those that do not being out of the set. The function above is
the characteristic function of this set, so it is also equivalent to say a relation is
computable if this set is computable.

For now, it is easiest to think of relations in the former terms to avoid
needing to code and decode tuples in our register machines. This is because, for
example, the characteristic function for the set of pairs (x, y) such that x < y is
technically different than the characteristic function for the set of codes of pairs
⟨x, y⟩ such that x < y. However, we will see later that these coding issues are
a non-factor, at which point it will usually be simpler to think of relations in
terms of sets rather than functions.

3



Lemma 5. The equality relation is computable.

Proof: We need to build a register machine such which computes the
function = (x, y) such that = (x, y) = 1 end up in R2 if x = y and
= (x, y) = 0 ends up in R2 otherwise. Consider the following:

Start R−
0

R−
1

R−
1 R+

2

Stop

e

e

e

Note that if R0 and R1 contain the sme number, then the first loop is
broken when R0 is empty, at which time R1 is empty as well, since the
same number was subtracted from both. Therefore the second R−

1 node
sends us to R+

2 , which then stops the program with the correct value
in R2. If the number in R0 is larger than the number in R1, then the
first R−

1 will stop the program before we ever follow the empty node for
the R−

0 node. If the number in R1 is larger, then once the first loop
breaks, R1 will sitll not be empty, so the program will stop following
the non-empty output node for the second R−

1 node.

Thus this register machine computes the equality relation as desired.

4



Lemma 6. The less than relation is computable.

Proof: Consider the following register machine:

Start R−
0 R−

1

R−
1

R+
2

Stop

e e

e

We begin by removing one from R0 and R1 alternately. The number
starting in R0 is less than the number starting in R1 exactly when R0

is empty but R1 is not, in which case we add one to R2. In all other
cases, we simply stop the program with the default value of 0 in R2.

5


	More Computable Functions

