
Math 29: Turing Machines

April 6th, 2022

1 A Different Model of Computing

Register machines were not the original machine model of computation that
led to the development of modern hardware. There are many other variations
that all happen to be equivalent. We shall discuss one more.

The tape for a Turing machine is an infinitely long array, each cell of which
contains a 0, a 1, or a ∗ (blank). The head for a Turing machine is a pointer
which at any given time points to exactly one cell, can read the symbol currently
located in that cell, and can move to the adjacent cell on either the left or right.
All Turing machines have access to a tape and a head, although the contents
of the tape need not start out the same between different machines. When a
Turing machine is started, there will be be finitely many 0’s and 1’s with the
head pointing to the leftmost of these non-blank cells. All other cells will be
blank.

An instruction for a Turing machine is a quadruple

⟨state, read, act, new state⟩

Each Turing machine has finitely many possible state terms. Often the text-
book will use q0, q1, q2, . . . , qk to represent these states, but you are free to use
whatever naming convention you prefer so long as it does not conflict with the
other symbols. When the machine is currently in state, then the instruction
controls what the current behavior of the machine is whenever the cell the head
is pointing at contains the symbol read, which can be exactly one of 1, 0, or
∗. We will think of natural numbers in binary when thinking about Turing
machines. For given state and read values, there is at most one instruction for
the machine to perform.

act contains an instruction for the machine to perform. Valid instructions
are 0, 1, ∗, L, and R. The first three tell the machine to write the corresponding
symbol into the current cell, L tells the machine to move the head one cell to
the left, and R similarly tells it to move the head one cell to the right. Finally,

1



new state is the state that the machine should enter once it finishes its instruc-
tion.

A Turing machine is a collection of finitely many instructions and a start-
ing state, with optional conditions on the format of the input string. For exam-
ple, suppose our Turing machine starts in state q0 and contains the instructions
⟨q0, 0, R, q1⟩ and ⟨q0, 1, 0, q0⟩, taking in a consecutive input string. Whenever
this machine is in state q0, it reads the current symbol. If the current symbol
is a 0, the head moves right. If it is a 1, then it replaces the 1 with a 0. The
machine has no other states and no instruction for when it encounters a blank.
A Turing machine halts when it has no instructions to perform for its current
state and symbol, so this example machine zeroes the tape from left to right
until it encounters a blank, then halts.

Example 1. There is a Turing machine which doubles the input number on the
tape then halts.

Proof: Think about decimal expansions: if we want to multiply a
number by ten, we simply add a 0 to the end. The same applies for
doubling a number in binary. Therefore, we need a Turing machine
which moves right until it encounters a blank, overwrites that blank
with a 0, then halts.
Consider the Turing machine made up of the following instructions
which starts in state q0:

1. ⟨q0, 0, R, q0⟩

2. ⟨q0, 1, R, q0⟩

3. ⟨q0, ∗, 0, q1⟩

Then regardless of the non-blank cells on the tape, the machine moves
to the right. Once it encounters a blank, it adds a 0 to the end of the
tape, then enters state q1. Since there are no instructions for q1, the
machine halts. Left on the tape is the original sequence of 1’s and 0’s
with a 0 appended, which corresponds to double the original number in
binary.

2



A function is said to be (Turing) computable if there is a Turing machine
such that, given n (in binary) starting on the input tape, when the machine is
run it will halt with f(n) (also in binary) on the tape. The previous example
shows that the function f(n) = 2n is computable.

Lemma 2. For a fixed m, The two’s complement of n in m is computable.

Proof: Given a number 0 < n < 2m, n is represented in binary with
up to m bits, and its two’s complement in m is the number k such that
n+ k = 2m. If n = 0, then it is its own two’s complement. Recall that

Σm−1
i=0 2i = 2m − 1

Therefore, in binary 2m − 1 is the number with m-many 1’s. Therefore,
n+ (k− 1) = 2m − 1. Thus, to compute k, we need to flip the bits of n
then add 1.
We will consider the Turing machine with the following instructions,
which starts in state q0 and accepts as input a consecutive string of
length m.

1. ⟨q0, 0, 1, q1⟩

2. ⟨q0, 1, 0, q1⟩

3. ⟨q1, 1, R, q0⟩

4. ⟨q1, 0, R, q0⟩

5. ⟨q0, ∗, L, q2⟩

6. ⟨q2, 1, 0, q3⟩

7. ⟨q2, 0, 1, q3⟩

8. ⟨q3, 0, L, q2⟩

In state q0, it flips any non-blank value and enters state q1. In state
q1, it travels right when the cell is not blank. These states combine
to flip all of the bits across the consecutive input block. On the last
non-blank cell, state q1 will move right to the first blank cell and enter
state q0. On state q0 when the read value is empty, we move back into
the non-blank cells and enter state q2. In state q2, we try to add 1. We
do so by flipping the bit (since addition by 1 modulo 2 always adds 1),
then entering state q3. If q3 sees a 0 in the current cell, then we need
to carry the 1 by moving left and returning to state q2. If q3 sees a 1,
then we are finished and the program halts.

3



As in the case with register machines, a set is Turing computable if either
its characteristic or principle function is Turing computable.

Lemma 3. The set of even numbers is computable.

Proof: To check if a number is even in binary, we simply need to
check that the last bit is 0. We can do this with the following module,
assuming the input is a consecutive string of non-blank cells:

• ⟨q0, 0, R, q0⟩

• ⟨q0, 1, R, q0⟩

• ⟨q0, ∗, L, q1⟩

This module moves right until it reaches the end of the number, then
moves left to position the head on the last bit. We enter state q1 to
move into the next phase of the computation.

We now check the bit. If it is 1, then we need to output 0 because the
number is odd. If it is 0, then we need to output 1 because the number
is even. So we must flip the bit, then blank the rest of the tape before
halting. We can do so with the following module:

• ⟨q1, 1, 0, q2⟩

• ⟨q1, 0, 1, q2⟩

• ⟨q2, 0, L, q3⟩

• ⟨q2, 1, L, q3⟩

• ⟨q3, 0, ∗, q4⟩

• ⟨q3, 1, ∗, q4⟩

• ⟨q4, ∗, L, q3⟩

State q1 flips the bit, then enters state q2, which moves the head left
one cell. State q3 blanks the cell, and then state q4 moves left. These
two states alternate until state q4 moves left and enters state q3, but
the cell is already blank, at which point the machine halts. (Note that
nothing requires the head to point to the output, but we could make
this happen by moving right until we find a non-blank cell and halting.)

4



Lemma 4. The set of naturals divisible by eight is computable.

Proof. Homework 2 Question 3.

Lemma 5. The set of powers of four is computable.

Proof. Homework 2 Question 4.

The differences between Turing machines and register machines make some
things easier to compute in one format or the other. As the terminology sug-
gests, though, these two notions of computability are actually the same: given
a register machine, we can write a Turing machine that simulates it, and given
a Turing machine, we can write a register machine that simulates it.

We will talk about this on Friday, and more details will be done via guided
problems on Homework 2. Using these facts, we will be able to use whichever
definition of computability is most useful for the given problem. For exam-
ple, register machines are generally easier for dealing with arithmetic problems,
while Turing machines excel at string problems or problems easily represented
in binary.

5


	A Different Model of Computing

