
Math 29: Modeling Register Machines

April 8th, 2022

1 Modeling Register Machines

Given a register machine, we want to build a Turing machine which repre-
sents the same computation. The main difficulty is that Turing machines are
restricted to representing natural numbers with some specific representation,
whereas register machines are relatively agnostic. In a register machine, we
can always add or subtract one very simply, and numbers are automatically
kept separate in different registers. We do not need to worry about how we
will represent numbers, or how we will access them. With Turing machines, we
need to describe what the input string looks like, and we need to worry about
having enough space on the tape to add bits when addition requires it without
overwriting other data.

For example, one might attempt to represent the natural numbers in the reg-
isters using binary expansions like we have before, and separate each one with
a blank cell to demarcate where numbers stop and end. However, the problem
arises when we try to apply addition nodes. Suppose, for example, on the tape
we have 01 ∗ 1 ∗ 1001101. If we want to add 1 to the second number, in binary
this becomes 10. We would now need to shift bits along the tape to make space
for 10 while maintaining the organization of our tape.

Instead, we shall use unary coding to represent natural numbers. Given a
natural number k, its unary representation is a string of k 1’s. We will separate
numbers on the tape with a single 0, allowing us to use blanks to signal the start
or end of the tape. So, for example, if we want to model the run of a register
machine with inputs 3 in R0, 2 in R1, 0 in R2, and 1 in R3, then we would input
111011001 into our Turing machine. Since only finitely many registers, say k,
can be accessed by a given register machine program, we can ensure that there
are at least k zeroes in the input to ensure that we do not need to create more
register space. (We could do this, but we will avoid making our lives harder.)

1.1 Register Access

Next we describe how to access registers. The fact that the tape is connected
and we cannot access indices arbitrarily means that we need to build a module

1



to move the head into position to operate on a specific register. We start with
the specific k = 2, then describe how to generalize this process to arbitrary
numbers: Consider the following:

• ⟨q0, 1, R, q1⟩

• ⟨q1, 1, 1, q0⟩

• ⟨q1, 0, R, q2⟩

• ⟨q2, 1, R, q3⟩

• ⟨q3, 1, 1, q2⟩

• ⟨q3, 0, R, q4⟩

• ⟨q4, 1, R, q5⟩

• ⟨q5, 1, 1, q4⟩

• ⟨q5, 0, L, q6⟩

• ⟨q5, ∗, L, q6⟩

To begin, state q0 moves the process right. After each shift, we enter state
q1 and check the current value. If it is a 1, we do nothing and return to state
q0. If it is a 0, then this denotes the separation between the first number and
second number. Since we want the third number (the number corresponding to
R2), we move right into the next number. q2 and q3 repeat this process, but
for the second number. The state is keeping track of how many numbers we’ve
read so far. q4 and q5 similarly read through the third number. This time, since
this is the number we are interested in, we move left on either a 0 (if there are
more registers) or a ∗ (if this is the last register we use) to position the head
at the end of register R2. State q6 will start the next module based on what
instruction our original register machine wants to apply to R2.

We can generalize this to Rk by creating 2(k+1)-many registers, where states
q2i and states q2i+1 handle traversing the i-th register for each i. However, we
are not quite finished: once the instruction has been applied, we need to move
the head back to the starting point of our string before we can continue, as the
above module only works properly if we start at the beginning. To do this, we
simply apply the following module:

• ⟨q0, 1, L, q0⟩

• ⟨q0, 0, L, q0⟩

• ⟨q0, ∗, R, q1⟩

This simple module moves us left until we encounter blank space, then moves
right once to reposition at the start of the string. Notice that the state names
must be unique for each node on our register machine, so this will add an extra
state for each node.

1.2 Addition

We are now ready to describe how to program an addition node. Once we
have used the above module to move into position, we want to append a 1 to
the current number. However, this will eliminate the 0 separating the numbers,
so we need to shift everything else down one cell on the tape. We can do so as
follows:

2



• ⟨q0, 1, R, q1⟩

• ⟨q0, 0, R, q1⟩

• ⟨q0, ∗, R, q1⟩

• ⟨q1, 0, 1, q2⟩

• ⟨q1, ∗, 1, q4⟩

• ⟨q1, 1, R, q2⟩

• ⟨q2, 0, R, q2⟩

• ⟨q2, ∗, 0, q4⟩

• ⟨q2, 1, 0, q3⟩

• ⟨q3, 1, R, q3⟩

• ⟨q3, ∗, 1, q4⟩

• ⟨q3, 0, 1, q2⟩

First, notice that the symbol at the current location could be any of the
three: If we are dealing with R0 and it contains a 0, it will be ∗. If it is not R0

but it does contain 0, it will be 0. Otherwise, it will be 1. In all cases, we need
to move right and add a 1 using state q1. Due to the assumptions on our input
tape and the use of the above module, we know that the symbol after moving
right once will be either a 0 or a ∗, so in both cases we add the necessary 1. In
the former case, we then move right and enter state q2 to shift down the rest of
the tape. In the latter case, we are finished and can use the above module to
reset the head position.

States q2 and q3 will handle shifting the rest of the tape down. In state q2,
we replace the next open space (1 or ∗) with a 0 if we see one. If we overwrite a
1, we enter state q3 to denote that we now need to write a 1 when we next see
an open space. Regardless of how we get there, once we reach state q4, we can
reset the head position to prepare to simulate the next node.

1.3 Subtraction

Finally, we need to describe how to simulate a subtraction node. As with
the addition node, we use the register module to position ourselves at the end of
the appropriate register. Notice that if we see a 0 or ∗, then the register we are
looking to subtract from is empty. So we immediately apply the reset module
to simulate the case when the register machine follows the empty node. It is
straightforward to modify the repositioning module to overwrite a 1 with a ∗ if
we are already at the end of the string.

Therefore, the following module handles the case where we see a 1 and need
to subtract, but there are some symbols that need to be shifted down.

• ⟨q0, 1, 0, q1⟩

• ⟨q1, 0, R, q2⟩

• ⟨q1, 1, R, q2⟩

• ⟨q1, ∗, L, q6⟩

• ⟨q2, 0, R, q3⟩

• ⟨q2, 1, R, q3⟩

• ⟨q2, ∗, L, q6⟩

• ⟨q3, 1, L, q4⟩

3



• ⟨q3, 0, L, q5⟩

• ⟨q4, 0, 1, q1⟩

• ⟨q4, 1, 1, q1⟩

• ⟨q5, 0, 0, q1⟩

• ⟨q5, 1, 0, q1⟩

• ⟨q6, 0, ∗, q7⟩

• ⟨q6, 1, ∗, q7⟩

First, we overwrite the 1 with a 0, as that is guaranteed to be the next
symbol. From here, we now move the head right twice with states q1 and q2
to check the next symbol that needs to be moved up the tape. If at any point
we run into a blank while moving right, then we have moved up every sym-
bol and need to simply erase the last one, which is handled by q6. If we do
not see a blank, then we move left one space with state q3 and copy the next
symbol into the previous cell with states q4 and q5 depending on if it is a 1 or a 0.

Finally, we can apply the reset module to complete the subtraction.

1.4 Wrap-up

Thus, we are able to fully simulate register machines through Turing ma-
chines. Given a register machine, each node represents finitely many instructions
and states as described above. The connections between nods will be handled
by placing the appropriate starting states at the end of the reset modules.

This is a good illustration of the power of Turing machines: while they seem
very simple on the surface, with even basic numerical operations taking a fair
amount of work to code, they are actually quite powerful.

2 Modeling Turing Machines

The converse is true: given a Turing machine, we can simulate its operation
using a register machine. We will not give a complete proof of this, but you will
explore the basic ideas on homework 2. We will use a single register to contain
the entire tape, another register to contain the location of the head, and then a
separate register for each state.

Lemma 1. Describe in words or diagrams how you would use the value of one
register in ternary to represent the input tape.

Proof. Homework 2 Question 6.

Lemma 2. Describe in words or diagrams how you would use a register to
simulate a state, its potential actions, and the state changes.

Proof. Homework 2 Question 7.

4


	Modeling Register Machines
	Register Access
	Addition
	Subtraction
	Wrap-up

	Modeling Turing Machines

