
Math 29: Coding and Machines

April 11th, 2022

1 Codes

An important feature of register machines is that their building blocks are
incredibly simple. While we can build very complex algorithms using register
machines (and therefore also using Turing machines), it is very easy to describe
a single node in our machine. It is either a start node, a stop node, an addition
node, or a subtraction node. Each node is responsible for advancing program
flow to at most two separate nodes.

From this point forward, for a given object x, we will use #x to represent
the code for x. For example, #(x, y) = 1

2 (x+ y)(x+ y + 1) + y.

In order to describe a register machine, we have to describe each node, and
where those nodes go. Suppose M is a register machine with n non-Start/Stop
nodes Ni, each one given an index i in 1, 2, . . . , n, with N1 being the node
connected to the Start node. (We are reserving 0 as the index for the Stop
node.) Then the code for M will be

#M =

n∏
i=1

p#Ni

i

where pi is the i-th prime and #Ni is the code for the i-th node, which we shall
define below.

If Ni is an addition node R+
j with output node Nk, then

#Ni = 3j ∗ 5k

If Ni is a subtraction node R−
j with output node Nk and empty output node

Nl, then
#Ni = 2 ∗ 3j ∗ 5k ∗ 7l

1

Example 1. A code for the addition register machine M given in a previous
lecture is 32∗5

2∗73 ∗ 532∗5 ∗ 72∗3∗54 ∗ 1132∗53 .

Proof: Recall that the addition machine is

Start R−
0

R+
2

R−
1

R+
2

Stop
e e

There are four non-Start/Stop nodes. The one connected to the start
node is N1, and it is a subtraction node for R0. Its output node is N2,
and its empty node is N3. Therefore #N1 = 2 ∗ 30 ∗ 52 ∗ 73 = 2 ∗ 52 ∗ 73.

N2 is an addition node for R2 whose output node is N1, so #N2 =
32 ∗ 51 = 32 ∗ 5.

N3 is a subtraction node for R1. Its output node is N4, and its empty
node is the Stop node. Therefore #N3 = 2 ∗ 31 ∗ 54 ∗ 70 = 2 ∗ 3 ∗ 54.

N4 is an addition node for R2 whose output node isN3, so #N4 = 32∗53.

Therefore,

#M = 32∗5
2∗73 ∗ 53

2∗5 ∗ 72∗3∗5
4

∗ 113
2∗53

2

We can also code Turing machines. Each instruction ⟨qi, rj , ak, qs⟩ can be
coded in the form 2i ∗ 3j ∗ 5k ∗ 7s, where 0 = r0 = a0, 1 = r1 = a1, ∗ = r2 = a2,
L = a3, and R = a4. Then the code for the given Turing machine would be

#N =

n∏
j=1

p
#Ij
i

where the Ij ’s are the instructions.

Technically, in both our coding for the register machines and the coding
for the Turing machines, a single machine has multiple codes based on how we
number the nodes/instructions. This issue does not impact any of our practical
uses of codes for machines, but can be avoided entirely if we so choose by giving
formal rules by which nodes and instructions need to be numbered, which would
then give each machine a unique way to number its components. As discussed
in section 3.4 of the textbook, we can even make our codings surjective if we so
choose.

Recall that we have shown the basic arithmetic functions are computable:
addition, multiplication, subtraction, division, exponentiation, etc. While we
have not discussed it, the floor (least natural number less than or equal to)
and ceiling (largest natural number greater than or equal to) of natural-base
logarithms are as well: given a base b > 1 in R0 and some natural number n,
we can start computing b0, b1, b2, b3, Since this sequence is unbounded, we
can use the fact that less than (and greater than by symmetry) and equality
are computable to check when this sequence exceeds or equals n. We can then
return the appropriate power of b as required.

1.1 The Church Turing Thesis

Notice the following about the above argument: we did not explicitly build
a register machine. We used the fact that we knew certain relations and func-
tions were computable to describe the process of computing something, with
knowledge that we’d be able to construct a formal register machine from the
described process if we were required to. From this point forward, unless the
question asks for us to construct a machine, we will adopt the Church-Turing
Thesis, which says essentially that “real” computability is exactly the same
thing as Turing computablity. (And, by extension, register computability.) The
utility of this statement is that we can describe how to compute something in
words, equations, or by describing a process. As long as we don’t try to use
noncomputable information or do infinitely many things, then we can be assured
that we’d be able to create the necessary register/Turing machine if we needed
to. When asked to show something is computable without being instructed to
give a specific machine, proviing code, pseudocode, or describing the process by
which you’d compute the desired object is sufficient.

3

Notice that this is not a formal mathematical statement: “real” computablity,
like the terms “trivial” or “natural” when used in mathematics, does not have a
formal definition. It is impossible to prove (and, depending on your philosophy,
impossible to disprove) the Church-Turing thesis. While a careful mathemati-
cian rightly may feel discomfort here, you should think of it as saying “the things
which you can ever hope to compute are exactly the things which you can al-
ready write a program to compute in your favorite programming language.”
(Here we are assuming infinite time and memory: it’s computable if you can
write a program that would compute it, even if that program can’t run on any
physical computer we have.)

Giving a formal proof that a given programming language, like C++ or
Python, is Turing complete (i.e. the things it can compute are exactly the
same thing as we could compute with Turing machines) is generally tedious.
However, the following informal argument is convincing: it is not hard to write
Turing machine modules to handle bitwise And and Negation. Computers are
just large circuit-boards of binary gates. Any binary gate can be represented
by some composition of And and Negation gates (a formal mathematical state-
ment which is true, but we do not prove it here), so for any gate on the circuit
board, we can build a Turing machine module to simulate it. However, when
our favorite C++ program or Python script is compiled/interpreted, it is turned
into machine code that runs through the hardware gates. So all of it can be
simulated by a Turing machine that simulates the low-level machine code it
produces. (The reason that this is not a formal proof is that many compilers,
for example g++, are not Turing-complete despite the language of C++ being
so. But it illustrates the main ideas. A similar argument applies to quantum
computers as well.)

Here is an example of a valid way to apply the Church-Turing thesis.

Lemma 2. Given an infinite set A ⊆ ω, its characteristic function is com-
putable if and only if its principle function is computable.

Proof: Suppose χA is computable. Compute pA(n) for arbitrary n by
calculating values of χA(k) for k = 0, 1, 2, When we find the n-th k
such that χA(k) returns 1, halt and return k.

Suppose pA is computable. Compute χA(n) for arbitrary n by calculat-
ing values of pA(k) for k = 0, 1, 2, Since A is infinite, eventually we
will either see pA(k) = n, in which case we halt and return 1, or we see
pA(k) > n but pA(i) < n for i < k, in which case we halt and return 0.

4

1.2 Back to Coding

With the (unnecessary but expedient) aid of the Church-Turing thesis, we
can describe how register machines can read codes and simulate the behavior of
the register machine coded by a number.

We can compute the characteristic function of the prime numbers via the
following procedure: given n, check the modulus (remainder) of n by k for each
1 < k < n. If it is ever 0, return 0 as n is not prime. If it is never 1, n must be
prime so we return 1. Then by the above lemma, the principle function for the
prime numbers must be computable, so given n there is a computable process
which outputs pn. In particular, given natural numbers n and k greater than 1,
we can use repeated division to calculate the largest power of k which divides
n.

In particular, given n = #M , we can compute #Ni for each of M ’s nodes by
figuring out the powers of each prime which divide n. We can also determine if
#N is an addition or subtraction node by checking if it is even, which register it
should operate on by checking the power of 3 that divides it, and which node(s)
it continues to by doing the same for 5 and 7. In particular, we can write
a program which takes in n = #M as input and then “runs” M. We’ll
explore this idea more next time.

5

	Codes
	The Church Turing Thesis
	Back to Coding

