
Math 29: Universal Machines

April 13th, 2022

1 The Universal Machine

Last time, we discussed how to code register machines in such a way that we
can computably determine what the machine coded by a given number does and
simulate its behavior. This process can then, in effect, run any machine by hav-
ing access to the number which codes it. This is called a univeral machine,
and the fact that Turing and register machines compute the same functions
means there are examples of universal machines for both types.

We will not give a full example of a universal machine, as the existence is
the most important part. One should think about universal machines as similar
to operating systems like Windows, MacOS, or Linux. Users of an operating
system can install programs in the form of binary files, i.e. large numbers in
binary. The operating system can then decode those files into a set of instruc-
tions to then run. We can even create new programs and run them inside the
operating system at run-time, which is something we can do through a universal
machine as well.

We will fix a universal machine U (either register or Turing - it doesn’t
matter). We assume that the machine takes a single input k = p(e, n), which
runs the machine coded by e on input n. (In the coding we gave, not all numbers
were codes for machines. We can assume anything not given as a code is a code
for the machine that diverges on every input.) Then we will use the notation

U(k) = U(⟨e, n⟩) = φe(n)

to represent running the e-th machine with input n. As with all partial func-
tions, we use φe(n) ↑ to mean φe diverges on input n, i.e. the machine never
stops running. If it does stop running and outputs m, we write φe(n) ↓= m.
As our pairing function is computable, we can abuse notation and allow φe to
take in any finite number k of inputs as opposed to specifying that it decodes
one input into k.

The following theorem justifies why we allow partial computable functions
and do not require them to be total.

1



Theorem 1. There is no machine T such that the T -functions indexed by e
(i.e. fe : ω → ω defined via f(n) = T (⟨e, n⟩)) are exactly the total computable
functions.

Proof: Suppose for the sake of contradiction that there were such
a T . Then we defined a total computable function as follows. Define
g : ω → ω via g(n) = T (⟨n, n⟩)+1. It is not hard to see that g is a total
computable function. To compute it, we run the program T on input
⟨n, n⟩. Since T lists out exactly the total computable functions, it halts
on all inputs, so we can wait for it to converge, then add one. (If it were
not total, then g(n) ↑ whenever T (⟨n, n⟩) ↑.)

However, since T (⟨e, n⟩) lists out all of the total computable functions,
there must be some k such that g(n) = T (⟨k, n⟩) for all n. (Otherwise,
g would be a total computable function not in the list.) But then we
have that

g(k) = T (⟨k, k⟩) + 1 = T (⟨k, k⟩)

This is a contradiction, so there can be no such T .

2



This may remind you of Cantor’s diagonalization proof that the real num-
bers have a different cardinality than the natural numbers. Diagonalization is
a very important idea in computability theory, which we will see multiple times.
Essentially, if you want to ensure that some list cannot contain every object of
a certain type, you exploit the list to construct a new object which cannot be
in the list.

While there may not be a list of the total computable functions, then

Lemma 2. (The Padding Lemma) For any e, there are infinitely many k such
that φe = φk. In fact, there is a total computable, increasing function f such
that, for all n, φf(n) = φe.

Proof: Fix e. Then letM be some register machine such that #M = e,
and let Ri be a register unused by M . Then for each k, we can defined
Mk to be the register machine which starts with k R+

i nodes followed
by an R−

i -node which empties Ri, and when empty, runs M .

Then for all k, #Mk+1 > #Mk, and Mk computes the same function
as M . Finally, define f(n) = #Mn, which is total computable because
our coding of register machines is effective.

Lemma 3. There is a total computable function s : ω2 → ω such that

φe(x0, . . . , xk) = φs(e,xk)(x0, . . . , xk−1)

Proof: Given e and xk, let s(e, xk) return the code of the register
machine M which takes in x0, . . . , xk−1 and starts with xk-many R+

k

nodes, then runs U with inputs e, x0, . . . , xk.

s is total computable because our coding of machines is effective, and
we can compute its code because our coding of machines is effective.

3



Theorem 4. (The s-m-n Theorem) For any n and m, there is a total computable
function smn : ωn+1 → ω such that, for all e,

φe(y0, . . . , ym−1, xn−1, . . . , x0) = φsmn (e,x0,...,xn−1)(y0, . . . , ym−1)

Proof: We argue by induction on n. n = 1 was just the previous
lemma. Now suppose there is such an smn for all m, and consider n +
1. Define smn+1 via smn+1(e, x0, . . . , xn) = s(sm+1

n (e, x0, . . . , xn−1), xn).
Then

φsmn+1(e,x0,...,xn)(y0, . . . , ym−1) = φs(sm+1
n (e,x0,...,xn−1),xn)

(y0, . . . , ym−1)

By the previous lemma, this is equal to

φsm+1
n (e,x0,...,xn−1)

(y0, . . . , ym−1, xn)

By the induction hypothesis, then, this is equal to

φe(y0, . . . , ym−1, xn, . . . , x0)

as desired. Thus we have shown the theorem for all n by induction,
and the code for smn can be computed because our coding of machines
is effective.

4



A sequence of functions {fe}e∈ω is uniformly computable if there is a
total computable function g such that, for all n and e, g(e, n) = fe(n). That
is, there is a single machine which can compute every function using indices for
them. The universal machine witnesses that the partial computable functions
are uniformly computable, whereas the lemma above shows that the total com-
putable functions are not.

Uniformly computable functions allow us to define computable functions
using infinitely many other computable functions, as there is actually a single
program which can simulate all of them at once. We shall exploit this fact often,
particularly when it comes to the listing of all partial computable functions.

Lemma 5. There is a partial computable function g which cannot be extended
to a total computable function. I.e., there is partial computable g such that for
all total computable functions f , there is n with g(n) ↓≠ f(n).

Proof: Define g(n) to be φn(n) + 1. Notice that g(n) ↓ if and only if
φn(n) ↓.

Now suppose for the sake of contradiction that there is some total com-
putable function f such that f(n) = g(n) whenever g(n) ↓. Then f = φe

for some e, in which case

f(e) = φe(e) = g(e) = φe(e) + 1

φe(e) ↓ because f is total. But this is a contradiction, therefore no such
f can exist.

Notice the following:

Lemma 6. If the domain of φe is computable, then it can be extended to a total
computable function.

Proof: Suppose the domain of φe is computable with characteristic
function g. Then define f : ω → ω via

f(n) =

{
φe(n) if g(n) = 1

0 if g(n) = 0

Then f is total because g is, and φe(n) ↓ whenever g(n) = 1. (As this
means n is in the domain of φe.) Furthermore, it is computable because
g is.

5



A set X is said to be computably enumerable (or c.e.) if it is the domain
of φe for some e. Then we write X = We. The universal machine gives us not
only an enumeration of the partial computable functions, but of the c.e. sets
as well. Notice that, by combining the above two lemmas, we see that there
is a c.e. set which is not computable. Specifically, the domain of any partial
computable function which cannot be extended to a total computable function
is computably enumerable but not computable.

The c.e. sets are incredibly important for computability theory. They are
sets which can be listed out by an algorithm, but there is no way in general to
know if a number will never show up in the list. We will see that our primary
examples of non-computable sets are c.e., and that they have a rich structure.

Lemma 7. A set is computable if and only if it and its complement are c.e.

Proof. Homework 3 Question 2.

Lemma 8. Prove that every c.e. set contains a computable subset.

Proof. Homework 3 Question 3.

6


	The Universal Machine

