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April 15th, 2022

1 Recursion Theorem

The Recursion Theorem allows us to create programs which are self-referential.
One can think of this as similar to recursion in the computer science sense: for
example, we can program the factorial function to, on input n, call itself with
input with new input n− 1 and multiply the return value by n. As long as we
provide a base case to stop the recursion from proceeding infinitely, this will halt
and compute n!. The Recursion Theorem allows us to do even more powerful
things, like performing operations on the index of the function we are defining.

In computability, given a function f : ω → ω, e is a fixed point of f if
φe = φf(e).

Theorem 1. (The Recursion Theorem) Every total computable function f :
ω → ω has a fixed point. Moreover, given an index for f , we can uniformly
compute its fixed point.

Proof: Consider the partial computable function g such that g(x, y) =
φf(φx(x))(y). By the s-m-n theorem, there is a total computable function
s such that

φf(φx(x))(y) = φs(x)(y)

Then let m be an index for s, which we can compute using an index for
f .

Now notice that φm(m) ↓, as φm(m) = s(m), and s is total. Thus

φs(m)(y) = φφm(m)(y) = φf(φm(m))(y)

Then φm(m) is a fixed point of f .
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The recursion theorem originates from an attempt to diagonalize out of the
class of computable functions. This was originally done by Kleene, who was
attempting to disprove the Church-Turing thesis. That this fails provides evi-
dence of the contrary: that we should believe the Church-Turing thesis.

Specifically, we look at the following matrix:

φ0(0) φ0(1) φ0(2) φ0(3) . . .

φ1(0) φ1(1) φ1(2) φ1(3) . . .

. . . . . . . . . . . . . . .

φx(0) φx(1) φx(2) φx(3) . . .

. . . . . . . . . . . . . . .

To try and diagonalize out of this list, we try and look at the function f
which uses the universal machine to compute f(n) using the machine φn(n), i.e.
using the machine whose code appears on the n-th row in the above table in
the diagonal slot. (Or f(n) diverges if φn(n) does.) f is intuitively computable,
so if it is not in the above list, then the Church-Turing thesis fails. The idea is
that, if e is an index for f , then

f(e) = φe(e) = φφe(e)(e)

On the surface, this seems like it should not be true.

However, f is in this list, and we can compute exactly which row it is using
the method in the proof of the recursion theorem. Even more generally, if we
try to computably pick and choose rows to diagonalize out of this list, then the
function we create will still be in this list, and we will still be able to compute
the fixed point in the same way. This is very strong evidence that one cannot
diagonalize out of the partial computable functions.
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The recursion theorem allows us to show the existence of some surprising
computable functions.

Lemma 2. There is an e such that φe(n) = n+ e.

Proof: By the s-m-n theorem, there is a total computable function
s such that φs(x)(y) = x + y. By the recursion theorem, s has a fixed
point e. Then

φe(y) = φs(e)(y) = y + e

Lemma 3. There is an e such that We = {e}.

Proof: Recall that Wx is the domain of φx. Therefore, we need to find
an e such that φe(e) ↓= 1 and φe(k) ↑ for k ̸= e. Consider the partial
computable function f(x, y) such that f(x, y) = 0 if x = y and f(x, y) ↑
otherwise. Let m be an index for f .

By the s-m-n theorem, there is a total computable function s such that
φs(m,x)(y) = φm(x, y). Let g : ω → ω be defined via g(k) = s(m, k).
Then g is a single-variable, total computable function, so it has a fixed
point e. That is,

φe(y) = φg(e)(y) = φs(m,e)(y) = φm(e, y)

for all y. Then, in particular, φe(e) = φm(e, e) ↓= 1, but for k ̸= e,
φe(k) = φm(e, k) ↑.

Thus We = {e} as desired.

The trick we used in the proof above shows us how to improve the recursion
theorem to allow for parameters.
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Theorem 4. (Recursion Theorem with Parameters) If f(y, x0, . . . , xk−1) is a
total computable function, then there is an injective, total computable function
r(x0, . . . , xk−1) such that

φr(x0,...,xk−1) = φf(r(x0,...,xk−1),x0,...,xk−1)

Proof: By the s-m-n theorem, there is an injective, total computable
function d : ωk+1 → ω such that

φd(y,x0,...,xk−1)(n) =

{
φφy(y,x0,...,xk−1)(n) ifφy(y, x0, . . . , xk−1) ↓
↑ otherwise

Let e be an index of f(d(y, x0, . . . , xk−1)), and define the total com-
putable function r : ωk → ω via r(x0, . . . , xk−1) = d(e, x0, . . . , xk−1).
Then we claim that r(x0, . . . , xk−1) is a fixed point.

Observe that

φr(x0,...,xk−1)(n) = φd(e,x0,...,xk−1)(n)

By the definition of d and choice of e, this is equal to

φφe(e,x0,...,xk−1)(n) = φf(d(e,x0,...,xk−1),x0,...,xk−1)(n)

Thus this proves the claim, and we are done. (Notice that we need not
worry about the second case in the original definition of d, as e is an
index of the total function f ◦ d.)
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Essentially, the recursion theorem allows us to define a computable func-
tion using its index in the definition. While on the surface this is circular
reasoning, behind the scenes we can define a function with an extra parameter
using the s-m-n theorem, then apply the recursion theorem to show that there
is an index which is equal to plugging itself in as the added parameter. This can
all be done computably. Furthermore, the recursion theorem with parameters
even allows us to do so with free variables floating around and still be able to
compute the index uniformly in those variables.

In fact, there will be infinitely many indices we can use to satisfy the re-
cursion theorem, so we are not able to try and change the function slightly to
break the fixed point.

Lemma 5. Each total computable function has infinitely many fixed points.

Proof. Homework 3 Question 6.
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