
Math 29: Halting Problems

April 20th, 2022

1 Halting Problems

Last time, we observed that the following set is not computable:

{e : φe(e) ↓= 0}

In this case, it cannot be, as it would lead to a contradiction on the inclusion
of an index e for its characteristic function: If e is in the set, then φe(e) ↓= 0.
But since e is an index for the characteristic function, and e is in, then we must
also have φe(e) ↓= 1, a contradiction. If e is not in the set, then φe(e) ↓= 0 by
the definition of a characteristic function, which contradicts the fact it is not in
the set.

Suppose we try to fix this contradiction by instead looking at

{e : φe(e) ↓= 1}

Now the above contradiction is no longer a problem. If e is an index for the
characteristic function of this set, then if e is in the set, φe(e) ↓= 1 as expected.
If it is not in the set, φe(e) ↓= 0 is does not provide a contradiction. Does this
mean that this set is computable, while the former is not?

It turns out that the answer is no. Suppose, for the sake of contradiction,
that it is computable. Because it is computable, so is its complement. Let e be
an index for the characteristic function of its complement. Now consider φe(e).
If e is in the complement, then φe(e) ↓= 1, which is a contradiction. If it’s not
in the complement, then φe(e) ↓= 0, which is also a contradiction.

We’re starting to see the problem with trying to compute a set whose mem-
bership is defined based on convergence information. In fact, very broadly,
determining which indices and inputs cause the universal machine to halt are
not computable. The most general problems about halting that we can define
are the following:

M = {⟨e, k, n⟩ : φe(k) ↓= n}
H = {⟨e, k⟩ : φe(k) ↓}
K = {e : φe(e) ↓}

1



Theorem 1. M , H, and K are all not computable.

Proof: If we can prove that K is not computable, then that implies
H is not computable: if it were, then we could compute K by asking
if ⟨e, e⟩ is in H. However, we cannot compute K as otherwise we’d be
able to compute {e : φe(e) = 0} as follows: if e ̸∈ K, then it is not in.
If e ∈ K, then run φe(e) until it converges, and check if the output is 0.
Since this set is not computable, K is not either. Similarly, if we could
compute M , then we could compute this set via checking if ⟨e, e, 0⟩ is
in M . Therefore, none of the three is computable.

Alternatively, there is a very classic argument to show that K is not
computable. Suppose that it is. Then define the computable function

f(e) =

{
1 if e ̸∈ K

↑ if e ∈ K

As K is computable, f is computable, and therefore it has some index i.
Now consider whether or not i ∈ K. If i ∈ K, then φi(i) ↓. But, looking
at the definition of f , this means that f(i) = 1, which only occurs when
e ̸∈ K, a contradiction. Conversely, if i ̸∈ K, then φi ↑. Again looking
at the definition of f , this must mean that i ∈ K, also a contradiction.
Therefore, K cannot be computable.

The proof of the above highlights an interesting facet of computability, which
is clear when one considers it. If we think of computing a set as solving a prob-
lem, then if a specific instance of the problem is not computable, the general
case cannot be computable either. A famous example of this is seen in Hilbert’s
tenth problem, which we discussed on the first day of class. Recall that Hilbert’s
tenth problem asked to find an algorithm to determine whether or not an in-
put Diophantine equation (a polynomial in finitely many variables with integer
coefficients) has integer roots. I.e., it asks if the set of Diophantine equations
with integer roots is computable. The reason why the problem didn’t ask for
a radical equation to compute the roots is because the Abel-Ruffini theorem
already guarantees no such thing exists even for single-variable polynomials of
degree at least five.

Similarly, in the above argument, we deduced that M and K could not be
computable, as that would imply a much narrower problem would also be com-
putable, which we already proved to be impossible.

2



One might wonder if the fact that the halting problem is not computable is
a side-effect of Rice’s Theorem. After all, that broadly showed that attempting
to compute which functions were in a certain non-trivial class is an impossible
problem. However, we will see that the halting problem is not an index set.

Lemma 2. K is not an index set.

Proof. Homework 4 Question 3.

The halting problem is a central piece of computability theorem. We will
come back to it multiple times throughout the course, and it is the most impor-
tant example of a noncomputable set.

1.1 Fixing the Halting Problem

The fact that H and K are not computable means that, in general, the only
way to tell if a program halts is to run it and find out. This leads us to an
important insight which will allow us to work around the fact that the halting
problem is not computable.

The notation
φe,s(n)

represents the result of running the machine coded by e on input n for s stages
- either s-many instructions in a Turing machine, or operating s-many nodes
in a register machine. The formal definition of a stage is largely irrelevant - it
could be five instructions, seven nodes, etc. As long as it is a finite, predictable
amount of time. We use the notation φe,s(n) ↑ to denote that, after running
the e-th machine on input n for s stages, the machine has still not stopped and
returned a value yet. It may in the future, but it has not yet. If it has stopped
in s or fewer steps and output m, then we write φe,s(n) ↓= m.

In other words, φe(n) ↑ if and only if, for all s, φe,s(n) ↑. If φe(n) ↓, then
there exists some s such that φe,s(n) ↓. We can think of the number of stages as
time: if a machine is going to halt, then there is some time at which it will halt.
If it does not halt, then it does not halt at any given time. In the meantime,
given a specific time, it may not have halted yet, but it could halt in the future.

When stages are taken into account, we can now compute whether or not a
program has halted yet.

Lemma 3. The following sets are computable:

{⟨e, n,m, s⟩ : φe,s(n) ↓= m}

{⟨e, n, s⟩ : φe,s(n) ↓}

{⟨e, s⟩ : φe,s(e) ↓}

3



Proof: Run the machine coded by e on input n (e) for s-stages. If it
has halted (and output n), return true. If it has not halted yet, return
false. This process is computable because we can modify the universal
machine to have a counter following every node which decrements some
register containing the current stage. If the stage counter runs out before
we reach a stop node, return 0. If we reach a stop node first, return the
original return value plus one. We can then react to the return value
accordingly.

Following similar notation, recall that We = {n : φe(n) ↓}. Then We,s =
{n : φe,s(n) ↓}, that is the set of all n which have converged by stage s. It
follows that

We =
⋃
s∈ω

We,s

Often when we construct c.e. sets using priority arguments, we proceed by
defining each We,s inductively. We let We,0 = ∅, then inductively define We,s+1

by adding some new elements to We,s+1 in some computable fashion. We then
let our final set be the union, or “limit,” of this whole process. This relies
heavily on the fact that c.e. sets can be listed out, but we can’t necessarily list
out their complement.

1.2 Return to the Halting Problem

Notice that the halting problem is c.e.: we can list out the elements of K
by running each φe(e) in parallel and enumerating e if φe(e) halts. A terser
proof is to note that K is the domain of the function U(⟨e, e⟩). It turns out
that not only is the halting problem c.e., but it is in fact the peak of all c.e.
sets. As we shall see later in the course, if we know the contents of K, we will
be able to figure out the contents of ANY other c.e. set. In the terminology
of solving problems, if we can solve the halting problem, we can solve any other
c.e. problem.

We now turn our attention to Post’s Problem: Emil Post asked the fol-
lowing: is there a c.e. set which is not computable, but which does not give us
enough information to solve the halting problem? In other words, the halting
problem is the most complex c.e. problem in every way, but is that because
they are all the same? Or are there some problems which are easier to solve
than others? It turns out that all c.e. problems are not the same, and you can
find ones with essentially any relationship between them that you want. We
will not prove the full scope of this fact, but we will see some specific examples.

4


	Halting Problems
	Fixing the Halting Problem
	Return to the Halting Problem


