
Math 29: Creative Sets

April 22nd, 2022

1 Productive Sets

We’d like to see some more examples of noncomputable c.e. sets, in further-
ance of exploring Post’s Problem. Notice that if we are to build X c.e. but not
computable, then it suffices to ensure that Xc is not c.e. (We proved on the
homework that X is computable if and only if it and its complement are c.e.)
In other words, for each e, we need to ensure that Xc is not equal to We. One
way to do this would be to ensure that Xc is not a subset of We.

We say that a set P is productive if it has a productive function. A
productive function is a (partial) computable function ψ such that, whenever
We ⊆ P , ψ(e) ↓ and ψ(e) ∈ P \We. That is, a productive function is able to
produce a witness to the fact that P ̸=We whenever We ⊆ P . Then it is imme-
diate that productive sets are not c.e., so finding a c.e. set whose complement
is productive will necessarily be a noncomputable c.e. set.

A set C is said to be creative if it is c.e. and its complement is productive.
It is a fair question to ask if creative sets even exist. In fact, they do, and we
have already seen one.

Lemma 1. K is creative.

Proof: We need to give a productive function for Kc. That is, a
computable function ψ such that whenever We ⊆ Kc, we have that
ψ(e) ↓∈ Kc \We. Let ψ be the identity function, i.e. ψ(n) = n for all
n.

Firstly, ψ(e) ↓ for all e. Now suppose We ⊆ Kc. Then e ̸∈ We: if it
were, then φe(e) ↓ since We = dom(φe). But this would imply e ∈ K,
contradicting that We ⊆ Kc. Thus e ̸∈ We, which means φe(e) ↑ and
thus e ∈ Kc. As e was arbitrary, ψ is a productive function for Kc.
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While the definition of productive sets only requires a partial computable
function, we can prove that a stronger condition is true.

Lemma 2. If P is productive, then it has an injective, total computable pro-
ductive function.

Proof: We first create a total productive function q. Let ψ be a
productive function for P . By the s-m-n theorem, there is a total com-
putable function s : ω → ω such that

φs(x)(n) =

{
φx(y) if ψ(x) ↓
↑ otherwise

Then notice if ψ(x) ↑, then Ws(x) = ∅. Therefore Ws(x) ⊆ P , so
ψ(s(x)) ↓. Therefore, define q(x) to be the first of ψ(x) and ψ(s(x))
to converge. (If ψ(x) ↓, then ψ(s(x)) need not necessarily converge, so
we cannot simply use that.)

We now create an injective productive function p from q. By the s-m-n
theorem, there is a total computable function h such that

φh(x)(n) =

{
1 n = q(x)

φx(n) otherwise

Then Wh(x) = Wx ∪ {q(x)}, Wh(h(x)) = Wx ∪ {q(x), q(h(x))},
Wh(h(h(x))) = Wx ∪ {q(x), q(h(x)), q(h(h(x)))}, etc. Now define p(0) =
q(0). To define p(n+ 1), list out the set

{q(n+ 1), q(h(n+ 1)), q(h(h(n+ 1))), . . . , q(hk(n+ 1)), . . . }

There are two cases. Either we will see some q(hk(n + 1)) such that it
does not appear in p(0), . . . , p(n), in which we set p(n + 1) to the first
one we see. Or, if we never see this, we will eventually see a repetition,
i.e. the set is finite because q(hk(n + 1)) = q(hm(n + 1)) for some
k ̸= m. In this case, we set p(n + 1) equal to the least number not
appearing in p(0), . . . , p(n). Then this construction ensures that p is
total, computable, and injective.

Finally, we need to justify that p is a productive function for P . If
p(x) = q(hk+1(x)) by the first case, then Wx ⊆ Whk(x) ⊆ P for some

k, and therefore q(hk(x)) ∈ P \Whk(x) ⊇ P \Wx. If the value of p(x)
is set by the second case, then it must be the case that Wx ̸⊆ P : If it
were, then by induction Whk(x) ⊆ P for all k, but for some specific e
we would have q(he(x)) ∈ Whe(x), contradicting that q is a productive
function for P .
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Of course, this is not particularly helpful for addressing Post’s Problem: we
wanted to find a problem that couldn’t be used to solve the halting problem,
not the halting problem again. Can we find some other creative set which is
weaker? It turns out that the answer is no: a set is creative if and only if it
solving it solves the halting problem. This is a result due to John Myhill.

Theorem 3. Let P be any productive set. Then there is an injective, total
computable function f such that x ∈ Kc if and only if f(x) ∈ P .

Proof: By the above lemma, let p be an injective, total productive
function for P . Consider the computable function

φe(x, y, n) =

{
0 φy(y) ↓ and n = p(x)

↑ otherwise

By the s-m-n theorem, there is a total computable s such that
φs(x,y)(n)φe(x, y, n). Then Ws(x,y) = {p(x)} if y ∈ K and ∅ otherwise.
By the recursion theorem with parameters, there is a total, injective,
computable function t such that

Wt(y) =Ws(t(y),y) =

{
{p(t(y)) y ∈ K

∅ otherwise

Now suppose y ∈ K. Then Wt(y) = {p(t(y))}, so Wt(y) cannot be a
subset of P : this would contradict the fact that p is productive for P .
Therefore, p(t(y)) ∈ P c.

Conversely, suppose y ̸∈ K. ThenWt(y) = ∅, soWt(y) ∈ P and therefore
p(t(y)) ∈ P\Wt(y) = P . Thus p◦t is a function with the desired property.
(It is total and injective as the composition of total, injective functions.)

Thus we have been able to reduce the problem of figuring out if something is
in K by figuring out if something is not in P c. To determine membership in K,
apply p ◦ t then check whether or not it is an element of P c. Showing that we
can solve one problem via simplifying it to a second problem is an example of
a reducibility. We’ll see some formal definitions of various reducibilities after
the midterm, but this is a common idea in mathematics: we solve new problems
by showing that the answer must relate to that of a question we have already
solved.
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