
Math 29: Simple Sets

April 25th, 2022

1 Immune Sets

Last time, we discussed the creative sets in an attempt to address Post’s
Problem. I.e., we are trying to find a c.e. set which does not give us enough
information to solve the halting problem. As we saw, creative sets fail to achieve
this. This leads us to look elsewhere.

A set is immune if it is infinite, but contains no infinite c.e. subset. A set
is simple if it is c.e. and its complement is simple. Notice that, while we don’t
explicitly require a simple set to be infinite, all simple sets will be: If A were
finite, then it is computable, and therefore its complement is cofinite and com-
putable. However, this would make its complement an infinite c.e. set, so it
cannot be immune.

In general, we can use this idea to prove that simple sets are different than
what we have seen before.

Lemma 1. Let S be a simple set.

• S is not computable.

• S is not creative.

• There is no total computable function f such that f(e) ∈ S if and only if
e ∈ K.

Proof:

• If S were computable, its complement would be as well. But
then its complement would be infinite and c.e., and therefore not
immune.

• By Homework 4 Question 8, productive sets are not immune.
Therefore, simple sets are not creative.
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Proof: Suppose S is c.e. and there is f as stated in the lemma. By
the s-m-n theorem, there is a total computable injection s such that
φs(n)(k) = φn(f(k)). Then for all e, Ws(e) = {n : f(n) ∈ We} =
f−1(We). We claim f ◦ s is a productive function for Sc.

Suppose We ⊆ Sc. Then Ws(e) = f−1(We) ⊆ Kc. However, it cannot
be the case that φs(e)(s(e)) ↓. If it did, then s(e) ∈ K and f(s(e)) ∈ S.
But, we also have s(e) ∈ Ws(e) = f−1(We). That means that there is k ∈
We such that f(s(e)) = k. But since We ⊆ Sc, this is a contradiction.
Therefore, φs(e)(s(e)) ↑, and it follows that f(s(e)) ∈ Sc. Furthermore,
φe(f(s(e))) = φs(e)(s(e)) ↑, so f(s(e)) ̸∈ We as desired.

To summarize, if there is a function f with the assumed properties, then
S is creative. Now suppose S is simple. It is not creative by the previous
point, so by contrapositive such an f cannot exist for f .

Notice that in the proof for the final bullet point above, we did not use the fact
that S was simple or that Sc is immune. This means it is true for arbitrary c.e.
sets that such a function exists only if the set is creative.

Something one should always be careful about when introducing a mathe-
matical definition is to make sure the definition is not vacuous. By the above,
if they exist, the simple sets are outside of the scope of what we’ve seen before.
They can’t be computable, but they also cannot be essentially the same as K.
But, we first need to prove that simple sets exist.

Theorem 2. There exists a simple set S.

Proof: We shall build a uniform sequence of finite c.e. sets St, and we
will set S =

⋃
t∈ω St. We will meet all of the following requirements:

Ri : Wi infinite =⇒ Wi ∩ S ̸= ∅

Notice that if we can meet these requirements, S will coimmune as no
infinite c.e. set will be entirely contained within its complement

We start by defining S0 = ∅. Given St, look for the least e < t such
that We,t ∩ St = ∅ and there is some t > x > 2e such that x ∈ We,t.
If we find such an e, choose the least corresponding x and set St+1 =
St ∪ {x}. If there is no such e, let St+1 = St. Because time-bounded
computation is all computable, and there are finitely many e and x to
check at each stage, this process is computable. Continue to stage t+2.
Set S =

⋃
t∈ω St, and this is a c.e. set.
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Proof: (Cont.) All that is left to do is to check that we have met
our requirements and verify that our set is coinfinite. (That is, its
complement is infinite.) The latter is not hard to see, as [0, 1, . . . , 2n+
1] ∩ S contains at most n elements for all n because we always choose
x > 2e and we act on Re at most once.

Finally, we argue that Ri is met for all i. If Wi is finite, then we succeed
automatically. If Wi is infinite, then there will be t large enough so that
t > i and there is some t > x > 2i such that φi,t(x) ↓. Then eventually,
either St+1∩Wi ̸= ∅ at some point, or i will eventually be the least index
ready to act, at which point it does. In both cases, we get S ∩Wi ̸= ∅
as necessary.

Thus, simple sets exist. Furthermore, we can’t use a total, computable func-
tion to reduce the halting problem to a simple set. However, as we shall see, we
still have not satisfied Post’s Problem.

A simple set S is effectively simple if there is a computable function f such
that whenever We ⊆ Sc, f(e) ↓ and We contains no more than f(e) elements.
Notice that the above set is effectively simple with f(n) = 2n+1: If there were
x ∈ We with x > 2e, then the least one would be added to S when it was Re’s
turn to act.

Lemma 3. There is an effectively simple set with f(n) = n. This is called the
Canonical Simple Set.

Proof: We will use the same requirements Ri. As we have argued
above, if we meet them, then the resulting set will be simple. Therefore
we just need to build our set and prove that it is effectively simple as
witnessed by the identity.

Let S0 = ∅. Given St, let s
t
i represent the i-th element of Sc

t in increasing
order. In other words, Sc

t = {s0t < s1t < . . . }. Find the least e < t such
that We,t ∩ St = ∅ and there is some t > i > e with sti ∈ We,t. Let
St+1 = St ∪ {sti} for the least such i. If there is no such e and i, let
St+1 = St.
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Proof: (Cont.) Let S =
⋃

t∈ω St. Suppose We ⊆ Sc. We need to
show that |We| ≤ f(e). We act on requirement Re at most once, so
eventually there is some t large enough that sti = si. In other words
the compliment of S stabilizes to its correct value below any n by some
stage m. If |We| > e, then for some i ≥ e we have smi = si ∈ We. But
this is a contradiction, as we would then have put si into S.

It turns out that, while we can’t use a single injective function, in general
there are simple sets which are able to solve the halting problem.

1.1 Domination

A function g dominates f is, for all but finitely many n, either f(n) ↑ or
f(n) ↓< g(n) ↓. That is, g is larger than f almost everywhere.

Notice that how big a function is relates to how much information it contains.
Consider the function

f(e) =

{
s s is the least number such that φe,s(e) ↓
↑ otherwise

Then suppose total g dominates f . We can then use f to compute K as follows:
given e, check g(e). Run φe,g(e)(e). If it converges, then e ∈ K. If it doesn’t,
then by definition φe(e) ↑, so e ̸∈ K. Thus we can use any total function which
dominates f to compute K.

We can construct a simple set which can compute a total function which
dominates every partial computable function. In particular, it can dominate f
above, and therefore compute K.

Lemma 4. There is a simple set S such that the principle function of its com-
plement dominates every partial computable function.

Proof: Construct the canonical simple set, but in addition to the sti’s
enumerated, enumerate atn into St+1 whenever φe,t(n) ↓≥ stn and e ≤ n.
Then stn will only be enumerated by e ≤ n by construction, and there
are only finitely many such e’s and n’s. Thus sn still stabilises, but
sk > φe(k) for all k ≥ e.

In other words, ensure that Sc contains only the maximum along the
diagonal of φe(n).
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Later, we will see that all effectively simple sets can solve the halting prob-
lem. However, it turns out that not all simple sets can! In fact, every noncom-
putable c.e. set computes a simple set which is not effectively simple. This will
use a technique known as permitting, which we have somewhat already seen.

In a permitting construction, we generally are trying to compute something
from a c.e. set. We will set up our construction so that seeing an element being
enumerated gives us permission to perform some operation on our construc-
tion. Then the c.e. set will be able to compute the constructed set by letting
us run the construction up to the listed stage.
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