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1 Groups

Recall that a group is a set X together with a function ∗ : X2 → X such
that

• There is an e in X such that e∗x = x∗ e = x for all x ∈ X. That is, there
is an identity element.

• For all x ∈ X, there is y ∈ X such that x ∗ y = y ∗ x = e. That is, every
element has an inverse.

• For all x, y, and z, (x ∗ y) ∗ z = x ∗ (y ∗ z). That is, ∗ is associative.

The canonical example is the group of integers under addition. Notice that
this group is computable. What this means is that the group operation ∗ is
computable as a function on natural number codes for elements of the group.
(That is, the function ∗# : ω → ω such that ∗#(⟨#x,#y⟩) = #(x ∗ y) is com-
putable.)

Any finite group is computable, of course. Other examples include the free
group, rational numbers under addition, and the rational, invertible n× n ma-
trices. The real numbers, and real invertible matrices, are not computable in
this sense because they are uncountable. However, they are “computable” in
the sense we will describe later.

A group presentation is a collection of generators and relations. Every
element can then be written as a product of powers of generators. Relations
provide rules which allow us to simplify multiplications. For example, if a is the
only generator and there are no relations, then the generated group is just the
integers. If we add the relation which specifies a∗a = e, then the group is {e, a}.

Given a group presentation, the word problem for the group is the problem
of determining whether or not two products of generator powers are equivalent.
In other words, it is the problem of simplifying group multiplication. As we will
see next time, even for computable or c.e. groups, the word problem need not
be solveable.
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2 Analysis

A real number r is said to be computable if there is a computable function
f such that, for any rational p > 0, f(#p) = #q, where q is a rational number
with |r − q| < p. That is, p is ϵ, and q is δ. However, we use different letters to
make clear that they must be rational.

This mostly aligns with our intuition. All integers and rationals are com-
putable. Numbers like π and e are computable: By Euler,
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Thus π can be approximated by first approximating π2 very closely as Σ∞
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then applying the ”long square root” algorithm will allow us to compute the
square root of the approximation to π2, which will approximate π. e is even
easier to approximate, as it is the limit of (1 + 1

n )
n.

Notice that, as with functions and sets in the natural numbers, there are
countably many machines, and therefore countably many computable reals. In
fact, given any noncomputable set X, the real in the unit interval
whose binary expansion is given by X is not computable. If it were,
then we could compute the original set.

The computable reals form a field, but are not complete as a metric space:
we know from classical mathematics that completions are unique, and that R is
the completion of the rational numbers. Therefore, the computable reals cannot
be complete, as their completion is also R.

3 Graphs and Trees

Given a graph G with finitely- or countably-many nodes coded by natural
numbers, we say G is computable if its edge relation is. It is not hard to see
that there are graphs which are computable and graphs which are not. For
example, given any noncomputable set C, define GC to be the graph with an
edge between 0 and n+ 1 if and only if n ∈ G, and no other edges.

In computability theory, trees are a very important object of study. A tree
is a connected, acyclic graph. In other words, there is exactly one path between
any two nodes in the tree. We will specifically be concerned with Baire Space,
denoted by ωω, and Cantor Space, denoted by 2ω. Baire space is the set of
all infinite strings of natural numbers, and Cantor space is the set of all infinite
binary strings.
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We can introduce a topology on both sets using the finite strings. ω<ω and
2<ω are the sets of finite strings of natural numbers and finite binary strings,
respectively. Given f ∈ ωω or X ∈ 2ω, for σ ∈ ω<ω and τ ∈ 2<ω we write σ ⪯ f
(τ ⪯ X) to mean that f(n) = σ(n) (τ(n) = X(n)) for all n < |σ| (n < |τ |).
We say f (X) extends σ (τ). Then given σ ∈ ω<ω, [σ] = {X ∈ ωω : σ ⪯ X},
and similarly for 2ω. In other worse, given a finite string, it generates the basic
open set of all functions/sets which agree with it.

[σ] will be clopen - both open and closed. It is open, as a basic open set, but
it will be closed because its complement will be the union of all the basic open
sets whose final element disagrees with the final element of σ. This topology
will be compact and totally disconnected - it has no nontrivial connected
subsets. In the case of Cantor space, under the identification between sets and
real numbers in the unit interval given by binary expansions, this gives a to-
tally disconnected topology on the reals. Cantor space is so-named because this
topology corresponds to the topology generated by the Cantor middle thirds set.

A binary tree T is a subset of 2<ω which is closed under initial segments:
if σ ∈ T and τ ⪯ σ, τ ∈ T . Then

[T ] = {X ∈ 2ω : For all n, the first n bits of X are in T}

We call elements of [T ] paths of T . Notice the following basic facts about binary
trees.

Lemma 1. If T is an infinite binary tree, then it has an infinite path.

Notice that this is not true for Baire space: the tree containing the empty
strings and all strings of length 1 is infinite, but it clearly has no infinite path.
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Importantly, this fact is not computably true: there is an infinite, com-
putable tree with no infinite, computable path.

Lemma 2. Given any two disjoint c.e. sets A and B, the sets which separate
A and B form a computable tree.

We know (or will know) from the Take-Home Midterm that there are disjoint
c.e. sets A and B which cannot be computably separated. Therefore, the tree
constructed above for A and B is an infinite computable tree with no computable
paths.
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