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1 Solving Problems Using Other Problems

As we have already seen, every c.e. problem can be solved if we can solve the
halting problem. The halting problem can be solved if we can solve any produc-
tive problem. This is an example of reducing some problem to another one. If
we can solve the latter, then we can solve the former. A notion of reducibility
is a a specific way that we think about reducing a problem to another one. As
we shall see, some reducibilities are stronger than others.

We will discuss three main notions of reducibility in this course: m-reducibility,
1-reducibility, and Turing reducibility. We have already seen some examples of
1-reducibility when we discussed creative and simple sets. Turing reducibility
will be the most important, which “correctly” captures our intuitive idea of
what it means to be able to solve one problem if we can solve another.

2 1-reducibility

A set A is one-one reducible (1-reducible) to a set B if there is a total,
computable, injective function f such that n ∈ A if and only if f(n) ∈ B. In
this case, we write A ≤1 B, and if B ≤1 A as well, then we write A ≡1 B and
say A is 1-equivalent to B. The 1-degree of A is {B : A ≡1 B}.

We can rephrase some previous results using this terminology. We proved that,
for any c.e. set C, C ≤1 K. We proved that, for any productive set P , Kc ≤1 P .
Furthermore, for any creative set C, K ≤1 C, and by combining with the pre-
vious, in fact K ≡1 C.

We also saw that, for any simple set S, K ̸≤1 S. This final fact justifies the
assertion that 1-reducibility is not the “correct” notion of reducibility for solv-
ing one problem through solving another: We mentioned that any effectively
simple set can solve the halting problem, yet none of them are 1-equivalent to
K. Thus we need to come up with a different definition.
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3 m-reducibility

A set A is many-one reducible (m-reducible) to a set B if there is a total
computable function G such that n ∈ A if and only if f(m) ∈ B. As before,
A ≡m B when A ≤m B and B ≤m A. Notice that if A ≤1 B, then A ≤m B
because 1-reduction adds an additional requirement to the function. Maybe it
is the case that, while a priori different, these reductions in fact coincide. It
turns out this is not true.

Given a set A, define B to be the set whose characteristic function is given
by

χB(n) =

{
1 if k! ≤ n < (k + 1)! and χA(k) = 1

0 otherwise

That is, take A and fatten it up by duplicating each element into a finite block,
with each block growing exponentially. Then B ≤m A: simply send n to the
k which defines its block. However, if A is not computable, then we need not
have B ≤1 A.

Recall that f dominates g if it is larger than g on all but finitely many inputs.

Lemma 1. Let A be a set whose principle function dominates all computable
functions, and let B be defined from A as above. Then B ̸≤1 A.

Proof: Consider the principle function of B. Notice that if k ∈ A and
k > 0, then pB(k) < (k+1)!. Now suppose for the sake of contradiction
that B ≤1 A with witness f . But then consider g(n) = maxk≤n(f((n+
1)!)) + 1. Clearly g is a computable function. However, if n ∈ A, then
pB(n) < (n+1)!, so {f(k) : k ≤ (n+1)!} contains at least n+1 elements
of A. (Those coming from f(pB(0)), f(PB(1)), . . . , f(pB(n)).

Therefore pA(n+ 1) < g(n+ 1). But this is a contradiction of the fact
that pA dominates every computable function, as pA does not dominate
g. Therefore no such f can exist, and B ̸≤1 A.

Thus m-reducibility is not the same as 1-reducibility. However, it falls prey
to the same problem we had with 1-reducibility: when proving that K being
1-reducible to a c.e. set C implies that C is creative, we did not use injectivity
of f in proving that s ◦ f was a productive function. So even if f is simply
total computable, s◦f is still a productive function for Cc. Therefore, K ≤m C
for c.e. C if and only if C is creative. Therefore, m-reducibility still does not
capture what we are looking for.
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4 Computable Isomorphism

A computable permutation is a total, computable bijection π : ω → ω.
Two sets A and B are computably isomorphic if there is a computable bijection
π such that

π(A) = {n : k ∈ A and π(k) = n} = B

In such an instance, we write A ≡ B.

The following theorem, known as Myhill’s Isomorphism Theorem, is es-
sentially a computable analog of the Cantor-Schröder-Bernstein theorem, which
says that two sets have the same cardinality if and only if there are injections
from one to the other in both directions.

Theorem 2. A ≡1 B if and only if A ≡ B.

Proof: The right-to-left direction is immediate, as π and π−1 are both
total computable injections.

Suppose A ≡1 B as witnessed by f and g, i.e. f reduces A to B and
g reduces B to A. We define a computable permutation π in stages.
That is, we will build finite sets Xs ⊂ A and Ys ⊂ B such that πs will
provide a permutation between Xs and Ys. As always, we start with
π0 = X0 = Y0 = ∅.

Given π2s, X2s, and Y2s, complete stage 2s + 1 as follows. If π(s) has
already been defined at a previous stage, i.e. if s ∈ X2s then continue
to stage 2s + 2 without doing anything. If it has not, compute f(s).
If f(s) ̸∈ Y2s, then set X2s+1 = X2s ∪ {s}, Y2s+1 = Y2s ∪ {f(s)}, and
π2s+1 = π2s ∪ {⟨s, f(s)⟩}. If f(s) ∈ Y2s, then apply π2s back and forth
to find x ∈ X2s such that f(x) ̸∈ Y2s. Then set X2s+1 = X2s ∪ {x},
Y2s+1 = Y2s ∪ {f(x)}, and π2s+1 = π2s ∪ {⟨x, f(x)⟩}.

For stage 2s+2 given stage 2s+1, do the same thing but define π−1
2s+2(s)

in terms of g using Y2s+1 rather than f using X2s.

Let π =
⋃

s∈ω πs. π is computable because f and g are. It is a total
bijection because we define π(s) and π−1(s) by stage 2s + 2. Finally,
suppose n ∈ A. If π(n) was defined using the first case, then π(n)
was the end of a chain of the form f(g(. . . g(f(n)) . . . ). Then by the
properties of f , n ∈ A if and only if π(n) ∈ B because f preserves
“A-ness” to “B-ness” and g preserves “B-ness” to “A-ness.” A similar
argument ensures the same if π(n) is defined via the second case.
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