
Math 29: Oracles

May 9th, 2022

1 Oracles

Recall that an oracle machine can be thought of as a compute program which
has access to a function, oracle(n), which returns 0 or 1 based on whether or
not n is in the oracle. When we run the oracle machine, we have some X ⊆ ω
as the input oracle, which determines which n return 1 and which return 0.

It is important to note the distinction between an oracle machine, and the
run of an oracle machine with a specific oracle. An oracle machine is just a Tur-
ing or register machine with an added function, so there are still only countably
many machines. They still have an effective coding, i.e. Φe represents the e-th
oracle machine, and there is a universal oracle machine. ΦX

e represents feeding
the oracle X into the e-th machine.

We mentioned the following fact when we discussed effectively simple sets,
which we now proof to illustrate the use of oracles in computation.

Theorem 1. If S is effectively simple, then there is an oracle machine Φe such
that ΦS

e = χK .

Proof: Recall that a set is effectively simple if it is c.e. and there is
total computable function f such that |Wi| < f(i) for all i such that
Wi ⊆ Sc. Let f be such for S.

As K is c.e., it is equal to Wk for some k. We will consider K in stages,
i.e. the sequence of sets {Ks}s∈ω which are the domains of the functions
φk,s. (I.e., {Wk,s}s∈ω.) We call this an enumeration of K. Similarly,
because S = Wj is c.e., there is an enumeration {Ss}s∈ω.

Given x, define θ(x) to be the least s such that x ∈ Ks. In other words,
this is the partial computable function which outputs the least stage
at which x enters K. As in the canonical simple set construction, let
Sc
s = {as0 < as1 < . . . }.

1

Proof: (Cont.) Then by the recursion theorem with parameters, there
is h(x) such that

Wh(x) = {aθ(x)0 < a
θ(x)
1 < · · · < a

θ(x)
f(h(x))}

if x ∈ K, and Wh(x) = ∅ otherwise. In other words, given x and m,
compute θ(x). If it converges, then enumerate the first f(m) elements
of the complement of Sθ(x). Then apply the recursion theorem to get
a fixed point for this process in terms of x. So far, everything we have
done is completely computable.

Define r(x) to be the least s such that asf(h(x)) = af(h(x)). In other

words, the smallest stage such that the f(h(x))-th element of the com-
plement at stage s is the correct f(h(x))-th element of the complement
in the end. Because c.e. sets never undo enumerated elements, this
means that the first f(h(x)) elements of the complement are finalized
and will not change moving forward, i.e. atf(h(x)) = af(h(x)) for all t ≥ s.
Furthermore, r is total because of this. Notice that this is not com-
putable in general: we cannot know for sure when the first few elements
of the complement have stabilized. However, if we have access to
S as an oracle, then we CAN compute r(x). Therefore, we can
compute everything up to this point using S as an oracle.

Now suppose x ∈ K and r(x) ≤ θ(x). Then this means

Wh(x) = {aθ(x)0 < a
θ(x)
1 < · · · < a

θ(x)
f(h(x))} = {a0 < a1 < · · · < af(h(x))}

is a subset of Sc by definition. But this is a contradiction, as |Wh(x)| =
f(h(x)) + 1 > f(h(x)) contradicts the fact that S is effectively simple
via f . Therefore, x ∈ K if and only if r(x) > θ(x), so x ∈ K if and
only if x ∈ Kr(x). Therefore, the oracle machine with access to S which
takes x as input, then calculates r(x) and enumerates Kr(x). It then
checks if x ∈ Kr(x), which matches whether or not x ∈ K.

This justifies our discussion on why 1-reducibility and m-reducibility were
not the correct notion: here, we are able to use information about any effec-
tively simple set to compute membership of the halting problem, but K ̸≤1 S
and K ̸≤m S. In both of these reducibilities, we are only allowed to ask one
question of the oracle: we have a total computable (injective) function f , which
does most of the work determining which question we should ask of the oracle.
As the name suggests, this is similar to ancient Greek pilgrims traveling to Del-
phi to ask a limited number of questions on which to base their decisions.

Limitations on how many oracle calls we are allowed to use and when lead to

2

a host of other reducibilities, such as truth table reducibility, weak truth table
reducibility, etc. We will not go into detail with these, instead starting with
Turing reducibility next time.

2 The Finite Use Principle

One facet of oracle computation is worth stressing. Note that, as with Turing
computation, runs of an oracle machine are finite when they halt: finitely many
bits of the tape have been read or written, finitely many instructions have been
run, and finitely many oracle queries have been asked. In particular,
if we pass in a separate oracles which agree on the same elements which are
queried, then the computation will run exactly the same.

To see an illustration of this, observe the proof of the above theorem. To
determine if x ∈ K, we need to know the first f(h(x)) elements of Sc. If these
do not change, then neither will r(x), so the determination of whether x is an
element of K will proceed the same regardless of the rest of the set.

Given a natural number n and a subset X of ω, X ↾ n represents “X re-
stricted to n,” i.e. the finite binary string of length n whose i-th bit is χX(i).
E.g., if E is the set of evens, then E ↾ 4 = 1010. If σ ∈ 2<ω (the set of finite
binary strings) and σ(i) = χX(i) for all i < |σ| (the length of σ), then we say
X extends σ and write σ ⪯ X.

Given σ ∈ 2<ω, let Φσ
e,s(n) represent running the oracle machine with σ on

the oracle tape for s steps, diverging if the machine has not halted by then or
if the machine attempts to query the oracle for some value not defined by σ.
If the s is omitted, then we will let Φσ

e (n) represent the computation Φσ
e,|σ|(n).

That is, we let the length of the oracle input bound the time the computation
is allowed to run.

So, Φ11001100
e (n) runs Φe(n) for 8 steps, returning the appropriate value if

the oracles is queried for numbers less than 8, but diverging if a larger value
is queried. We use ↑ and ↓ to represent divergence and convergence as per usual.

The use of a computation ΦX
e (n) which converges is denoted by µX

e (n), and
is defined to be the largest k whose membership in X is queried by the run
of the computation. (If the computation diverges, then its use does as well.)
Then, if τ = X ↾ µX

e (n) and τ ⪯ A,

ΦX
e,s(n) = ΦA

e,s(n) = Φτ
e,s(n)

We will use this in priority constructions: if we are building a set X by defining
its characteristic function as an increasing sequence of finite binary strings,
then so long as we do not go back and change things, any computations we see
converge will converge no matter what we do with the rest of X.

3

	Oracles
	The Finite Use Principle

