
Math 29: Turing Reducibility

May 11th, 2022

1 Solving Problems Using Oracles

A set A is Turing reducible to B if there is an e such that χA = ΦB
e . That

is, there is an oracle machine which computes the characteristic function of A
when using B as an oracle. We denote this with A ≤T B. We often approxi-
mate this by saying B computes A. If A does not compute B and and B does
not compute A, then we say A and B are Turing incomparable and write
A ⊥T B. If A ≤T B and B ≤T A, then B and A are Turing equivalent.

Notice that A ≤1 B and A ≤m B both imply A ≤T B, and A ≡ B implies
A ≡T B. In other words, Turing reducibility encompasses all of the reducibili-
ties we have previously discussed.

The equivalence classes of sets of naturals under ≡T are called Turing de-
grees. Note that all of the computable sets form a degree. In fact, if C is
computable, C ≤T X for any X: oracle machines are not required to query the
oracle, and contain all of the features of regular machines, so since χC = φk,
there is some e such that χC = ΦX

e for any X which simply does not use the
oracle.

We can finally state Post’s Problem formally for the first time: Is there a c.e.
set P such that K ̸≤T P? So far, we have proven that creative sets, c.e. index
sets, and effectively simple sets all do not satisfy this requirement. Fortunately,
now that we have the concept of an oracle machine, we can build examples.

Theorem 1. (Friedberg-Muchnik Theorem) There are Turing incomparable c.e.
sets A and B.

Notice that this solves Post’s Problem, as both must be Turing below K but
neither can compute K, as it would then compute the other. Similarly, neither
can be computable because the other would then be able to compute it.

Our previous constructions used no injury: once a requirement has been
met, we never have to worry about it again.

1



Now we will turn to finite injury. Here, requirements may be injured, i.e.
something we have done previously to meet them is changed and they become
unmet again. However, so long as they are only injured finitely often, eventually
they will not be injured again, so we can be assured that all remain met at the
end of the construction.

Proof: We work with the following requirements:

Re = A ̸= ΦB
e

Qe = B ̸= ΦA
e

Re has higher priority than Ri or Qi if and only if e < i, and Re has
higher priority than Qe. That is, the priority of requirements is ordered
as follows:

R0 > Q0 > R1 > Q1 > R2 > . . .

We first describe the basic strategy for meeting a single requirement.
Consider Re. The strategy for Qe will be essentially the same for B
instead of A.

Pick x for Re such that x has not been enumerated into As. Now wait
until we see ΦBs↾u

e,s (x) ↓= 0, where u is the use of this computation.
Notice that if this does not happen, then Re is satisfied: x ̸∈ A, but
ΦB

e (x) either diverges or doesn’t converge to 0, so in either case ΦB
e ̸=

χA. Therefore, if we see convergence to 0 at stage s, enumerate x into
As+1. Now, if nothing else changes, the requirement is met: x ∈ A, but
ΦB

e (x) ↓= 0, so ΦB
e ̸= χA.

This works in isolation, but the problem is that we cannot ensure that
things will remain unchanged. As other requirements are acting in par-
allel, elements are being enumerated into B and A. Another requirement
might put x in A despite ΦB

e (x) ↓= 1, forcing us to start over and pick
a new x. Q requirements are enumerating elements into B, so the com-
putation ΦBs↾u

e (x) may change if elements are added below u. So we
may have enumerated x to beat the computation, but then have the
computation switch to 1, therefore un-meeting the requirement. This
is an injury: even if we thought we had satisfied the requirement, we
now need to go back and satisfy it again.

The solution to this is a restraint function. This will put a lower
bound on which numbers can be enumerated into A and B for each
requirements. If the restraint is higher than u and x, then we can
be assured that the computation won’t break because B will remain
unchanged below the use.

2



Proof: (Cont.) We now describe the formal construction, then verify
that it works. We let ω[y] denote {⟨x, y⟩ : x ∈ ω}. That is, it is the set
of codes for pairs whose second elements are y. For each requirement Re

or Qe, we will pick the potential witness x from ω[e]. This will ensure
that x is not enumerated by any other requirement, removing one of our
potential conflicts.

We set the restraints r(e, s) = 0 and q(e, s) = 0 when s = 0, and
again whenever Re or Qe is injured at stage s for positive s. Whenever
we have the corresponding restraint positive, the restraint is currently
satisfied because this means we have chosen an x, which as discussed
above means we win so long as we are not injured. If the restraint is
0, the requirement has either been injured or not acted yet in the first
place. Let A0 = B0 = ∅.

For stage s, proceed as follows. Find the least e such that r(e, s) =
0 (i.e., the highest priority Re which has not been satisfied with the
following property) such that there is an x in ω[e] \As with ΦBs

e,s(x) ↓= 0
and r(i, s), q(i, s) < x for all i < e. (Notice that we can check this
computably because only finitely many x converge in fewer than s stages
by convention, and As will be finite, so it cannot contain all of ω[e].) If
there is no such e, then do nothing and continue to stage s+1. If there
is an e, do the following:

• Set As+1 = As ∪ {x}.

• Set r(e, s + 1) = s + 1. This preserves the computation ΦBs
e,s, as

the use is certainly less than or equal to s.

• For all j > e, define r(j, s+1) = q(j, s+1) = 0. That is, we injure
all lower priority requirements.

• For all i < e, define r(i, s + 1) = r(i, s) and q(i, s + 1) = q(i, s).
(In other words, continue restraining based on higher priority re-
quirements.)

To conclude the stage, repeat the process for the Q requirements with
A and B swapped. Finally, continue to stage s+ 1.

This completes the construction, so we let A =
⋃

As and B =
⋃
Bs.

We now need to check that A ⊥T B.

3



The following lemmas are, suitably, similar for Q requirements with B.

Lemma 2. If a requirement Re acts at stage s, and isn’t injured later, then it
is met and r(e, t) = r(e, s) for all t ≥ s.

Proof: By our construction, if Re acts at stage s, then ΦBs
e,s(x) ↓= 0

for some x ∈ ω[e]. x is then enumerated into A. Since Re isn’t injured
at a later stage, r(e, s) = q(e, s) = s+1 doesn’t change at a later stage,
so r(e, t) = q(e, t) = r(e, s). Therefore, no y ≤ s is enumerated into B
after stage s. Thus Bs ↾ s = B ↾ s, so ΦB

e (x) ↓= 0 ̸= 1 = χA(x).

Lemma 3. For every e, the requirement Re is met, acts at most finitely often,
and r(e, s), q(e, s) stabilizes at some finite stage.

Proof: We argue by induction on e. Therefore, assume this is true for
all Ri, Qi for i < e. Let v be such that all Ri, Qi do not act after stage
v. If r(e, v) > 0, we are done. If not, then it is 0. If Re acts after stage
v, then it is met by our previous discussions, and not injured because all
of the higher priority requirements do not act again. Then the restraint
functions are set when it acts and do not change. If it does not act,
then the restraint function is zero forever.

Suppose for the sake of contradiction that Re is not met, i.e. ΦB
e = χA.

Then it must be the case that Re does not act after stage v: if it were
to act, it would not be injured, and thus it would be met. Therefore
there must not be an x ∈ ω[e] \As for all s > v with ΦBs

e,s(x) ↓= 0 and x
greater than the higher priority restraints. But this is a contradiction,
as As contains at most finitely many elements of ω[e], and ΦB

e (x) ↓ for
all of them since it is total. As they are not already in A, they will
never be in A since Re does not act, giving us a contradiction since
ΦB

e (x) =↓= χA ̸= 0.

This completes the proof: every requirement is injured at most finitely often,
because it is only injured when higher priority arguments act, and they act only
finitely often. Once they are finished, Re and Qe will be guaranteed to be met
by either the next action or by default.

4


	Solving Problems Using Oracles

