
Math 29: Relativization

May 13th, 2022

1 Relativization

A theorem, argument, or proof relativizes if it goes through unchanged
when we replace “computable” with “X-computable” for an oracle X. Often,
we use the term to mean it relativizes to any oracle, but we will occasionally
use it when there are limitations on the oracle. In this case, we will list them.

This is best illustrated using an illustration. Recall the proof that the total
computable functions are not uniformly computable: there is no single ma-
chine which computes all and only the total computable functions. For exactly
the same reasoning, the total X-computable functions are not uniformly X-
computable. That is, if there were such a machine listing them all, ψX

e , define
ρ(n) = ψX

n (n)+ 1. Then this will be total, X computable, but cannot be in the
list. Therefore, such a listing does not exist.

Often, we will simply state that an argument relativizes when there is no
creativity required to modify the proof. For example, the Padding Lemma
relativizes simply by replacing computable with X computable. We provide
here a relativization of the proof of the s-m-n theorem to illustrate how one
would relativize a proof.

Lemma 1. There is a total computable function s : ω2 → ω such that

ΦX
e (x0, . . . , xk) = ΦX

s(e,xk)
(x0, . . . , xk−1)

Proof: Given e and xk, let s(e, xk) return the code of the oracle
machine M which takes in x0, . . . , xk−1 and starts with xk-many R+

k

nodes, then runs U with inputs e, x0, . . . , xk.

s is total computable because our coding of machines is effective, and
we can compute its code because our coding of machines is effective.

1



Theorem 2. (The s-m-n Theorem) For any n andm, there is a total computable
function smn : ωn+1 → ω such that, for all e,

ΦX
e (y0, . . . , ym−1, xn−1, . . . , x0) = ΦX

smn (e,x0,...,xn−1)
(y0, . . . , ym−1)

Proof: We argue by induction on n. n = 1 . Now suppose there is such
an smn for allm, and consider n+1. Define smn+1 via s

m
n+1(e, x0, . . . , xn) =

s(sm+1
n (e, x0, . . . , xn−1), xn). Then

ΦX
smn+1(e,x0,...,xn)

(y0, . . . , ym−1) = ΦX
s(sm+1

n (e,x0,...,xn−1),xn)
(y0, . . . , ym−1)

By the previous lemma, this is equal to

ΦX
sm+1
n (e,x0,...,xn−1)

(y0, . . . , ym−1, xn)

By the induction hypothesis, then, this is equal to

ΦX
e (y0, . . . , ym−1, xn, . . . , x0)

as desired. Thus we have shown the theorem for all n by induction,
and the code for smn can be computed because our coding of machines
is effective.

Notice that the function in the s-m-n theorem is computable. If we were to
replace every instance of computable with X-computable, it would remain true,
but we prove the stronger statement that the function is computable. The exact
statement after relativization can sometimes be subtle.

All of our core theorems about working with machines relativize.

Theorem 3. Every total X-computable function f : ω → ω has an X-fixed
point. Moreover, given an X-index for f , we can uniformly compute its fixed
point.

2



Proof: Consider the partial X-computable function g such that
g(x, y) = ΦX

f(ΦX
x (x))(y). By the s-m-n theorem, there is a total com-

putable function s such that

ΦX
f(ΦX

x (x))(y) = ΦX
s(x)(y)

Then let m be an oracle machine index for s, which we can compute
using an X-index for f . (That is, an index for an oracle machine which
computes s without accessing the oracle. This exists because s is com-
putable.)

Now notice that ΦX
m(m) ↓, as ΦX

m(m) = s(m), and s is total. Thus

ΦX
s(m)(y) = ΦX

ΦX
m(m)(y) = ΦX

f(ΦX
m(m))(y)

Then s(m) = ΦX
m(m) = Φ∅

m(m) is a fixed point of f .

Notice that, of all possible relativizations, the strongest possible one is true.
The fixed point is in terms of oracle machines with X as the oracle. It is true
for all total X-computable functions, not just the computable ones. But, we do
not need X in order to find the fixed point! It is enough to know which machine
X uses to compute f , which is information we do not need X to have.

Most theorems relativize in some fashion, once you find the right way to
combine things. For example, the Friedberg-Muchnik Theorem relativizes as
follows: given an oracle X, there are X-c.e. sets A and B such that A ⊥X

T B,
that is A ̸≤X

T B and B ̸≤X
T A. Here Turing reducibility relativizes in a subtle

way: B ≤X
T A if there is an e such that χB = ΦA⊕X

e . That is, we feed the oracle
information for both X and A.

It is important to note that not all results relativize. Depending on what facts
about the computable sets we use, they may no longer be true if we replace
computable with X-computable. We are not equipped with the terminology to
talk about some of the more common examples, but the following is certainly
of interest. (Note, this involves relativization using computable oracles, but a
restricted notion of machine.)

Theorem 4. (Baker, Gill, Solovay) There are computable sets A and B such
that PA = NPA but PB ̸= NPB

In other words, any solution to the P vs NP problem must use some technique
which does not relativize even to computable sets.

3


	Relativization

