Math 29: The Turing Jump

May 16th, 2022

1 Turing Jump

Recall the halting problems: H asks the question "for which e and n does $\varphi_e(n)$ converge?" Similarly, K asks the question "for which e does $\varphi_e(e)$ converge?" As with other statements about computatin, we can relativize the halting problem. For brevity, we will stick to K, but we can relativize H in exactly the same fashion.

Given a set X, the halting problem relative to X is denoted by X' and represents the set

$$\{e: \Phi_e^X(e)\downarrow\}$$

This is called the **Turing jump** of X, often shortened to just the jump. $K = \emptyset'$, and we will often call it "the jump." Technically K may not exactly equal \emptyset' , or in fact C' for any computable set C since our coding of oracle mchines may produce different codes for machines than the one for regular machines, but as we will see below this does not matter.

Lemma 1. If $A \leq_T B$, then $A' \leq_T B'$.

Proof: Given e, we need to determine if $\Phi_e^A(e) \downarrow$. As $A \leq_T B$, there is k such that $\chi_A = \Phi_k^B$. Then by the relativized s-m-n theorem, there is a total computable function f such that, given e, f(e) is the code for the oracle machine which replaces the **oracle** function with Φ_k^X .

Then $\Phi_{f(m)}^B(n) = \Phi_m^A(n)$ for all m and n. Then $e \in A'$ if and only if $\langle f(e), e \rangle$ is in H relativized to B, H^B . Thus this proves that $A \leq_1 H^B$. Then by the relativization of the fact that $H \leq_1 K$, H relative to B is 1-reducible to B', and thus by transitivity $A' \leq_1 B'$. (And therefore \leq_T as well.)

In particular, if $A \equiv_T B$, then $A' \equiv_T B'$, so which set we take the jump of does not matter: we will end up in the same Turing degree regardless.

The halting problem was our prototypical example of a noncomputable set. We can relativize this proof to show that there is no highest Turing degree.

Lemma 2. For all $X, X <_T X'$. That is $X \leq_T X'$ but $X' \not\leq_T X$.

Proof: We first show that $X' \not\leq_T X$. Assume for the sake of contradiction that $X \leq_T X'$. Then define the X-computable function

$$f(e) = \begin{cases} 1 & \text{if } e \notin X' \\ \uparrow & \text{if } e \in X' \end{cases}$$

As X is X'-computable, f is X-computable, and therefore it has some X-index i. Now consider whether or not $i \in X'$. From this, we obtaain the same contradiction as we did in the proof that K was not computable, so X' cannot be X-computable.

We now show that $X \leq_T X'$. By the relativized s-m-n theorem, there is a total computable function f such that

$$\Phi_{f(e)}^{X}(n) = \begin{cases} 0 & e \in X \\ \uparrow & \text{otherwise} \end{cases}$$

Then $f(e) \in X'$ if and only if $e \in X$, so f 1-reduces X to X'.

In fact, the same proof we used to show that $W_e \leq_1 K$ for all e relativizes to prove that $W_e^X \leq_1 X'$ for all X and all e, where $W_e^X = dom(\Phi_e^X)$. That is, every set which is c.e. relative to X is 1-reducible to X'. In particular, this allows us to invert the above lemma: If $A' \leq_1 B'$, then $A \leq_T B$.

This implies that there is no highest Turing degree: the jump always gets us strictly higher than where we started, and it is complete for the X-c.e. sets.

Nothing stops us from iterating the jump operation. X'' = (X')', X''' = ((X')')', and so on and so forth. We can also use the following notation: $X^{(0)} = X$ and $X^{(n+1)} = (X^{(n)})'$. That is $X^{(n)}$ is the *n*-th jump of X. By the above, each of these is not computable from the previous, so this gives us an infinite, ascending chain above every single degree.

A natural question one might ask: is every set computable from X' c.e. in X? Well, we know that this isn't true for a silly reason, as the complement of any noncomputable c.e. set is computable from the jump but is not c.e. However, we can make this question by talking about degrees. A Turing degree is a **c.e. degree** if it contains a c.e. set. Is every degree below the degree of X' an X-c.e. degree? (The other direction we proved above.)

In fact, we don't even know this for \emptyset' : is there a degree below K which is not a c.e. degree? It turns out the answer is yes.

Theorem 3. There is a set $X \leq_T K$ which is not of c.e. degree.

Proof: Note that the c.e. sets are uniformly computable in K: $g(n,k) = \chi_H(\langle n,k \rangle)$ is computable in K because H is, and uniformly computes the c.e. sets. We will now build a set $B \leq_T K$ such that $B \not\equiv_T W_e$.

Let $\sigma_0 = \emptyset$, the empty binary string. Given σ_{2s} for $s = \langle n, k \rangle$ define σ_{2s+1} as follows: The set

$$\{\tau: \sigma_{2s} \preceq \tau \text{ and } \exists m < |\tau| \ \Phi_{n,|\tau|}^{\tau}(m) \downarrow \neq \chi_{W_k}(m) \}$$

is computable, and since K is equivalent to the index set of nonempty c.e. sets, K can determine if it is empty or not. In other words, is there an extension of σ_{2s} which witnesses $\Phi_n^B \neq W_k$? If so, let $\sigma_{s+1} = \tau$, where τ is the first to be found. Otherwise, set $\sigma_{s+1} = \sigma_s 1$.

For σ_{2s+1} , define σ_{2s+2} as follows. Define

$$\sigma_{2s+2} = \sigma_{2s+1}(1 - \chi_{W_s}(|\sigma_{2s+1}|))$$

That is, add one bit to the end of σ_{2s+1} , and make it the opposite of the bit of W_s in the same position to ensure that B will not be equal to W_s in the end, and therefore not computable.

Finally, let $B = \bigcup_{s \in \omega} \sigma_s$. Then B will not be computable, as σ_{2s+2} ensures $B \neq W_s$ for all s. Furthermore, we claim that any c.e. set which B computes is in fact computable.

If $\Phi_e^B = \chi_{W_k}$, then there must have been no τ and no m extending $\sigma_{2\langle e,k\rangle}$ such that $\Phi_{e,|\tau|}^{\tau}(m) \downarrow \neq \chi_{W_e}(m)$. Therefore, for every τ extending $\sigma_{2\langle e,k\rangle}$, if $\Phi_e^{\tau}(m)$ converges, it converges to $\chi_{W_k}(m)$. Because $\Phi_e^B = \chi_{W_e}$, we know that there is a τ which converges, so we can compute W_e as follows: look for the first τ extending $\sigma_{2\langle e,k\rangle}$ such that $\Phi_{e,|\tau|}^{\tau}(m) \downarrow$, and return its value. Then by the above, it must equal $\chi_{W_k}(m)$, so this process shows W_k is computable.

Thus B is not computable, but computes no non-computable c.e. set, and therefore is not of c.e. degree. But it is computable from K because K can uniformly determine if extensions exist at every stage.