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1 Turing Jump

Recall the halting problems: H asks the question “for which e and n does
φe(n) converge?” Similarly, K asks the question “for which e does φe(e) con-
verge?” As with other statements about computatin, we can relativize the
halting problem. For brevity, we will stick to K, but we can relativize H in
exactly the same fashion.

Given a set X, the halting problem relative to X is denoted by X ′ and
represents the set

{e : ΦX
e (e) ↓}

This is called the Turing jump of X, often shortened to just the jump. K = ∅′,
and we will often call it “the jump.” Technically K may not exactly equal ∅′,
or in fact C ′ for any computable set C since our coding of oracle mchines may
produce different codes for machines than the one for regular machines, but as
we will see below this does not matter.

Lemma 1. If A ≤T B, then A′ ≤T B′.

Proof: Given e, we need to determine if ΦA
e (e) ↓. As A ≤T B, there

is k such that χA = ΦB
k . Then by the relativized s-m-n theorem, there

is a total computable function f such that, given e, f(e) is the code for
the oracle machine which replaces the oracle function with ΦX

k .

Then ΦB
f(m)(n) = ΦA

m(n) for all m and n. Then e ∈ A′ if and only if

⟨f(e), e⟩ is in H relativized to B, HB . Thus this proves that A ≤1 HB .
Then by the relativization of the fact that H ≤1 K, H relative to B
is 1-reducible to B′, and thus by transitivity A′ ≤1 B′. (And therefore
≤T as well.)

In particular, if A ≡T B, then A′ ≡T B′, so which set we take the jump of
does not matter: we will end up in the same Turing degree regardless.
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The halting problem was our prototypical example of a noncomputable set.
We can relativize this proof to show that there is no highest Turing degree.

Lemma 2. For all X, X <T X ′. That is X ≤T X ′ but X ′ ̸≤T X.

Proof: We first show that X ′ ̸≤T X. Assume for the sake of contra-
diction that X ≤T X ′. Then define the X-computable function

f(e) =

{
1 if e ̸∈ X ′

↑ if e ∈ X ′

As X is X ′-computable, f is X-computable, and therefore it has some
X-index i. Now consider whether or not i ∈ X ′. From this, we obtaain
the same contradiction as we did in the proof that K was not com-
putable, so X ′ cannot be X-computable.

We now show that X ≤T X ′. By the relativized s-m-n theorem, there
is a total computable function f such that

ΦX
f(e)(n) =

{
0 e ∈ X

↑ otherwise

Then f(e) ∈ X ′ if and only if e ∈ X, so f 1-reduces X to X ′.

In fact, the same proof we used to show that We ≤1 K for all e relativizes
to prove that WX

e ≤1 X ′ for all X and all e, where WX
e = dom(ΦX

e ). That
is, every set which is c.e. relative to X is 1-reducible to X ′. In particular, this
allows us to invert the above lemma: If A′ ≤1 B′, then A ≤T B.

This implies that there is no highest Turing degree: the jump always gets
us strictly higher than where we started, and it is complete for the X-c.e. sets.

Nothing stops us from iterating the jump operation. X ′′ = (X ′)′, X ′′′ =
((X ′)′)′, and so on and so forth. We can also use the following notation:
X(0) = X and X(n+1) = (X(n))′. That is X(n) is the n-th jump of X. By
the above, each of these is not computable from the previous, so this gives us
an infinite, ascending chain above every single degree.

A natural question one might ask: is every set computable from X ′ c.e. in
X? Well, we know that this isn’t true for a silly reason, as the complement
of any noncomputable c.e. set is computable from the jump but is not c.e.
However, we can make this question by talking about degrees. A Turing degree
is a c.e. degree if it contains a c.e. set. Is every degree below the degree of X ′

an X-c.e. degree? (The other direction we proved above.)

2



In fact, we don’t even know this for ∅′: is there a degree below K which is
not a c.e. degree? It turns out the answer is yes.

Theorem 3. There is a set X ≤T K which is not of c.e. degree.

Proof: Note that the c.e. sets are uniformly computable in K:
g(n, k) = χH(⟨n, k⟩) is computable in K because H is, and uniformly
computes the c.e. sets. We will now build a set B ≤T K such that
B ̸≡T We.

Let σ0 = ∅, the empty binary string. Given σ2s for s = ⟨n, k⟩ define
σ2s+1 as follows: The set

{τ : σ2s ⪯ τ and ∃m < |τ | Φτ
n,|τ |(m) ↓≠ χWk

(m)}

is computable, and since K is equivalent to the index set of nonempty
c.e. sets, K can determine if it is empty or not. In other words, is there
an extension of σ2s which witnesses ΦB

n ̸= Wk? If so, let σs+1 = τ ,
where τ is the first to be found. Otherwise, set σs+1 = σs1.

For σ2s+1, define σ2s+2 as follows. Define

σ2s+2 = σ2s+1(1− χWs(|σ2s+1|))

That is, add one bit to the end of σ2s+1, and make it the opposite of
the bit of Ws in the same position to ensure that B will not be equal to
Ws in the end, and therefore not computable.

Finally, let B =
⋃

s∈ω σs. Then B will not be computable, as σ2s+2

ensures B ̸= Ws for all s. Furthermore, we claim that any c.e. set
which B computes is in fact computable.

If ΦB
e = χWk

, then there must have been no τ and no m extending
σ2⟨e,k⟩ such that Φτ

e,|τ |(m) ↓̸= χWe
(m). Therefore, for every τ extending

σ2⟨e,k⟩, if Φ
τ
e (m) converges, it converges to χWk

(m). Because ΦB
e = χWe

,
we know that there is a τ which converges, so we can compute We as
follows: look for the first τ extending σ2⟨e,k⟩ such that Φτ

e,|τ |(m) ↓, and
return its value. Then by the above, it must equal χWk

(m), so this
process shows Wk is computable.

Thus B is not computable, but computes no non-computable c.e. set,
and therefore is not of c.e. degree. But it is computable from K because
K can uniformly determine if extensions exist at every stage.
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