Math 29: Arslanov’s Completeness Criterion

May 20th, 2022

1 Complete C.e. Sets

Recall that a c.e. set is complete if it computes every c.e. set. K is the
prototypical complete set, but we have seen many others. We proved that cre-
ative sets are complete, and in fact 1-complete. We proved that, while not
1-complete, effectively simple sets are still complete. However, these are not all
of the complete sets.

A total function f is fixed point-free if Wy # W, for all z. Notice
that this seems to be a slightly stronger requirement than being fixed point-free
under the previous notion, i.e. ¢,y # ¢, for all x. However, one can prove
that these are essentially the same thing.

Lemma 1. There is a fixed point-free function f <r X if and only if there is
g <t X such that g is fized point-free in the previous sense, i.e. Py(z) 7 Pu-
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Fixed point-free functions turn out to be the key to describing the complete
sets.

Theorem 2. (Arslanov’s Completeness Criterion) A c.e. set X is complete if
and only if it computes a fixed point-free function

Proof: First, suppose that X is complete. Recall that K <; Nem =
{e : W, # 0} by the Index Set Theorem. Because Nem <; K as it is
ce., K =p Nem =7 X. Therefore the following function f obtained is

X-computable:
W — 0 x € Nem
@ = {0}  otherwise

It is easy to check that f is fixed point-free, so X computes a fixed
point-free function.




Proof: (Cont.) Suppose that X computes a fixed point-free function
f. Because X is c.e., X <r (', so f is limit computable via some
computable g(n, s) by the Limit Lemma.

Let {K}scw be an enumeration of K, and define the function 6(x) to
be the least s such that € K, if z € K, and 6(x) 1 otherwise. Using
the recursion theorem with parameters, let h(x) be such that

Wohiz).0 re K
Wy = 4 Vahia).00)
h(@) {(Z) otherwise

That is, Wj,(,) waits for x to enter K, then enumerates the g(h(x), 0(z))-
th c.e. set if it does.

Now let m be a modulus for f. Then by the definition of a modulus we
have g(h(x),t) = f(h(x)) for all t > m(h(x)). Thus, if 0(x) > m(h(x)),
we have f(h(x)) = g(h(x),0(z)), and therefore Wy, ) = Wy(n(a)) - But
this is a contradiction of the fact that f is fixed point-free, so either
O(x) T (and thus z ¢ K), or 8(x) < m(h(z)). That means we can
compute whether or not x is in K by checking if it is in K, ((z)- (This
is similar to the proof of the fact that effectively simple sets compute
K.)

Lastly, recall that we proved last time that if f <7y X and X is c.e.,
then X computes a modulus for f. Therefore X can compute some m
as above, and thus can compute K. Therefore, X is complete.

Notice that, along with the homework problem, this proves an incredible
strengthening of the recursion theorem: if f is a total function computable from
a non-complete c.e. set, then f has a fixed point! For example, the principle
function of any non-complete c.e. set has a fixed point.

There are some generalizations of this theorem. While functions which can
compute the halting problem will not necessarily have a fixed point, we can
generalize the idea of a fixed point. An almost fixed point for a function f is
a number e such that W, =* Wy (), where =" means that the sets agree on all
but finitely many n.

Theorem 3. If f <7 0, then f has an almost fized point.



Proof: Suppose that f <7 (. Then f is limit computable by the
limit lemma, so there is a computable function ¢g such that f(n) =
limg o g(n,s). By the s-m-n theorem, there is a total computable
function #(x) such that

We(r) = U Wg(m,s),s

SEw

That is, ¢g(y) is the machine which starts enumerating each of the
Wy (x,s),s-€s for each s.

Then by the recursion theorem, 6 has a fixed point e such that

We = Wye) = U Wote,s),s

SEW

Now we claim that W, =" Wy (. Because f is limit computable, there
is some k at which g(e,t) = f(e) for all t > k. Then Wy 4)+ = Wiey
for all such ¢, so all of the places where Wy () and Wy, = W, differ
are, at worst, (J, 1 Wy(e,s),s- This is a finite union of finite sets, and
thus finite.

s<k

Therefore W, =" Wy (), so f has an almost fixed point.

This opens up a new question: The Arslanov Completeness Criterion ex-
tended the recursion theorem by proving that many more functions than the
computable ones have fixed points. We proved above a recursion-like theorem
in terms of almost fixed points: every jump-computable function has an almost
fixed points. Can we extend this to more functions.

We won’t prove this, but it turns out that we can. If X is c.e. in (', i.e. is
the domain of some ®X, then it can compute a function which has no almost
fixed points if and only if it can compute ()”. Recall that the proof that K is
complete relativizes, so " is complete for the sets which are c.e. in ('. This
shows the relationship with Arslanov’s Completeness Criterion.

One final extension of this result is about Turing fixed points. A Turing
fixed point for a function f is an e such that W, = Wy(). One can show that
every ()"’-computable function can compute a Turing fixed point.
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