
Math 29: Arslanov’s Completeness Criterion

May 20th, 2022

1 Complete C.e. Sets

Recall that a c.e. set is complete if it computes every c.e. set. K is the
prototypical complete set, but we have seen many others. We proved that cre-
ative sets are complete, and in fact 1-complete. We proved that, while not
1-complete, effectively simple sets are still complete. However, these are not all
of the complete sets.

A total function f is fixed point-free if Wf(x) ̸= Wx for all x. Notice
that this seems to be a slightly stronger requirement than being fixed point-free
under the previous notion, i.e. ϕf(x) ̸= ϕx for all x. However, one can prove
that these are essentially the same thing.

Lemma 1. There is a fixed point-free function f ≤T X if and only if there is
g ≤T X such that g is fixed point-free in the previous sense, i.e. φg(x) ̸= φx.

Proof. Homework 7 Question 4.

Fixed point-free functions turn out to be the key to describing the complete
sets.

Theorem 2. (Arslanov’s Completeness Criterion) A c.e. set X is complete if
and only if it computes a fixed point-free function

Proof: First, suppose that X is complete. Recall that K ≤1 Nem =
{e : We ̸= ∅} by the Index Set Theorem. Because Nem ≤1 K as it is
c.e., K ≡T Nem ≡T X. Therefore the following function f obtained is
X-computable:

Wf(x) =

{
∅ x ∈ Nem

{0} otherwise

It is easy to check that f is fixed point-free, so X computes a fixed
point-free function.
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Proof: (Cont.) Suppose that X computes a fixed point-free function
f . Because X is c.e., X ≤T ∅′, so f is limit computable via some
computable g(n, s) by the Limit Lemma.

Let {Ks}s∈ω be an enumeration of K, and define the function θ(x) to
be the least s such that x ∈ Ks if x ∈ K, and θ(x) ↑ otherwise. Using
the recursion theorem with parameters, let h(x) be such that

Wh(x) =

{
Wg(h(x),θ(x)) x ∈ K

∅ otherwise

That is, Wh(x) waits for x to enterK, then enumerates the g(h(x), θ(x))-
th c.e. set if it does.

Now let m be a modulus for f . Then by the definition of a modulus we
have g(h(x), t) = f(h(x)) for all t ≥ m(h(x)). Thus, if θ(x) ↓> m(h(x)),
we have f(h(x)) = g(h(x), θ(x)), and therefore Wh(x) = Wf(h(x)) . But
this is a contradiction of the fact that f is fixed point-free, so either
θ(x) ↑ (and thus x ̸∈ K), or θ(x) ≤ m(h(x)). That means we can
compute whether or not x is in K by checking if it is in Km(h(x)). (This
is similar to the proof of the fact that effectively simple sets compute
K.)

Lastly, recall that we proved last time that if f ≤T X and X is c.e.,
then X computes a modulus for f . Therefore X can compute some m
as above, and thus can compute K. Therefore, X is complete.

Notice that, along with the homework problem, this proves an incredible
strengthening of the recursion theorem: if f is a total function computable from
a non-complete c.e. set, then f has a fixed point! For example, the principle
function of any non-complete c.e. set has a fixed point.

There are some generalizations of this theorem. While functions which can
compute the halting problem will not necessarily have a fixed point, we can
generalize the idea of a fixed point. An almost fixed point for a function f is
a number e such that We =∗ Wf(e), where =∗ means that the sets agree on all
but finitely many n.

Theorem 3. If f ≤T ∅′, then f has an almost fixed point.
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Proof: Suppose that f ≤T ∅′. Then f is limit computable by the
limit lemma, so there is a computable function g such that f(n) =
lims→∞ g(n, s). By the s-m-n theorem, there is a total computable
function θ(x) such that

Wθ(x) =
⋃
s∈ω

Wg(x,s),s

That is, φθ(x) is the machine which starts enumerating each of the
Wg(x,s),s-es for each s.

Then by the recursion theorem, θ has a fixed point e such that

We = Wθ(e) =
⋃
s∈ω

Wg(e,s),s

Now we claim that We =∗ Wf(e). Because f is limit computable, there
is some k at which g(e, t) = f(e) for all t ≥ k. Then Wg(e,t),t = Wf(e),t

for all such t, so all of the places where Wf(e) and Wθ(e) = We differ
are, at worst,

⋃
s<k Wg(e,s),s. This is a finite union of finite sets, and

thus finite.

Therefore We =
∗ Wf(e), so f has an almost fixed point.

This opens up a new question: The Arslanov Completeness Criterion ex-
tended the recursion theorem by proving that many more functions than the
computable ones have fixed points. We proved above a recursion-like theorem
in terms of almost fixed points: every jump-computable function has an almost
fixed points. Can we extend this to more functions.

We won’t prove this, but it turns out that we can. If X is c.e. in ∅′, i.e. is
the domain of some ΦX

e , then it can compute a function which has no almost
fixed points if and only if it can compute ∅′′. Recall that the proof that K is
complete relativizes, so ∅′′ is complete for the sets which are c.e. in ∅′. This
shows the relationship with Arslanov’s Completeness Criterion.

One final extension of this result is about Turing fixed points. A Turing
fixed point for a function f is an e such that We = Wf(e). One can show that
every ∅′′-computable function can compute a Turing fixed point.

3


	Complete C.e. Sets

