
Math 29: Low and High Sets

May 23rd, 2022

We’re interested in knowing exactly how far the jump can go. Of course,
technically it goes up forever because we can iterate it over and over again.
However, how weak can the jump of a set be? How powerful can a single jump
be?

1 Low Sets

A set X is low if ∅′ ≡T X ′. In other words, the jump is as small as it could
possibly be. Note that this implies X <T ∅′, as X <T X ′ = ∅′. Furthermore,
it suffices to prove X ′ ≤T ∅′, as ∅ ≤T X implies ∅′ ≤1 X ′ for all X by previous
results.

Note that we haven’t explicitly excluded the computable sets. Whether or
not to include them is much like the opposite of whether or not to include 1 in
the primes: not including them still gives us a perfectly reasonable definition,
but requires us to rephrase many key results or theorems to say “computable
or low” rather than simply “low.”

Regardless, we need to justify that low is not an alias for computable. In
fact, we can show that there is a low simple set, answering two questions with
one construction: it will be a noncomputable low set because it is simple, and
it will be a simple set which is not complete.

We modify the construction of a simple set to produce a simple set which is
low. The basic idea is that, given an enumeration of a c.e. set As, we can define
the computable function

g(e, s) =

{
1 ΦAs

e,s(e) ↓
0 otherwise

Clearly if the limit along s exists for all e, then the limit of g will be the char-
acteristic function of A′, which will be jump computable by the limit lemma.
However, the danger could be that ΦAs

e,s keeps converging and then later diverg-
ing infinitely often: Imagine the machine which reads oracle values until it finds

1

an n such that at least half of the oracle(k) calls belows n are 0. This may halt
early, but then diverge if we keep adding elements. So without being judicious,
we could see convergence infinitely often, but continously break each one so that
it does not converge in the limit.

To fix this, we will add a restraint function to the traditional simple set
construction as inspired by Friedberg-Muchnik to constrain the use and ensure
this does not happen. Once we see a computation ΦAs

e,s(e) converge, then we set
the restraint so that lower priority requirements don’t break this computation.
Then each computation will break at most finitely often, as there will only be
finitely many higher priority requirements, thereby ensuring that this strategy
will work.

This is far from the only noncomputable low set. In fact, there are many low
sets, and we have a very reliable way to find low sets with desirable properties.
Recall that a binary tree T is a set of finite binary strings which is closed under
predecessors, i.e. if τ is a longer binary string than σ which agrees with σ on
its domain, then τ ∈ T implies σ ∈ T .

A class is a subset of 2ω, i.e. a set of sets of natural numbers. A class is a
Π0

1 class if it can be written as exactly the paths through some computable tree
T .

Theorem 1. (Low Basis Theorem) Every nonempty Π0
1 class contains a low

element.

Proof: Notice that ∅′, while it cannot in general solve Fin, it can
determine whether or not a tree is finite: a tree is finite if and only if
there is some n such that T ∩ 2n = ∅, i.e. there is some highest level.
This is a Σ0

1 question, as it is asking if an n exists such that ∀τ ∈ 2n (a
bounded quantifier), τ ̸∈ T . Therefore, ∅′ can uniformly determine if a
computable tree is finite.

Therefore, given any infinite computable tree T , define T0 = T and Te+1

via: the set
Ue = {σ : Φσ

e,|σ|(e) ↑}

is a computable tree, and thus so is Te ∩Ue. If Te ∩Ue is infinite, define
Te+1 = Te∩Ue. Otherwise, let Te+1 = Te. ∅′ can deteremine which case
to follow at each stage, and thus can compute this sequence of trees.

Let T̂ =
⋂

e∈ω Te. Then T̂ is infinite by compactness of 2ω, and thus
contains an element X by Weak König’s Lemma.

2

Proof: (Cont.) But notice that if Te+1 = Te ∩Ue, it must be the case
that ΦX

e (e) ↑. If not, then Ue ∩ Te is finite, and therefore ΦY
e (e) ↓ for

every Y ∈ Te, so in particular, ΦX
e (e) ↓. Therefore, ∅′ can compute X ′

by checking which case we used at each step.

In particular, there are low separating sets for any two computably insepa-
rable c.e. sets, and complete, consistent extensions of Peano Arithmetic which
are of low degree. These follow since we showed that each can be represented
as the paths through a computable tree.

It turns out that there are plenty of low sets, and plenty of low c.e. sets.

Theorem 2. (Sacks’ Splitting Theorem) For any c.e. set A, there are disjoint
c.e. sets B and C such that B ⊔ C = A which are both low.

In particular, there are two low sets which can compute the halting problem
when working together.

1.1 Low n

A set X if Lown if ∅(n) ≡T X(n). That is, its n-th jump is as small as it
could possibly be. Notice that a Lowk set is Lown whenever k < n.

2 High Sets

Conversely, a set X is high if X ≤T ∅′ and ∅′′ ≡T X ′. In other words, X
is jump computable, and its jump is as big as it could possibly be. The halting
problem is clearly high, as is any complete c.e. set. In particular, any set which
computes a fixed point-free function is high by Arslanov’s completeness criterion.

As in the case for lowness, we need to check that high is an interesting
property, not just a different name for being complete. It turns out, they are
not the same thing.

Theorem 3. (Martin’s High Domination Theorem) A set X is high if and only
if A computes a function f which dominates all total computable functions.

Proof: Suppose that X computes a function f which dominates every
total computable function. Then the function g(e, s) defined via

g(e, s) =

{
1 ∀z ≤ s ϕe,f(s)(z) ↓
0 otherwise

3

Proof: (Cont.) For any e which has φe total, the function θ(x) defined
to be the least s such that φe,s(x) ↓ is defined, and thus θ is total
computable. Therefore f(s) ≥ θ(s) for all but finitely many s, so g(e, s)
will be 1 after the last s where it is smaller. Therefore, the limit along
all e in Tot will exist and equal 1. Conversely, for any e not in Tot,
g(e, s) will be 0 for any s larger than the least element of W c

e , and will
have limit 0.

This proves that Tot is limit computable from X, which by the rela-
tivized limit lemma shows Tot ≤T X ′. Because we know Tot computes
∅′′, X is therefore high.

Now supposeX is high. Then because Tot computes ∅′′, it is computable
from X ′ and therefore limit computable in X via some g(e, s) by the
relativized limit lemma. Define t(e, s) to be the least number larger than
s such that g(e, t) = 0 or, for every x ≤ s, φe,t(x) ↓. In other words,
t(e, s) is the smallest time larger than s by which φe looks total up to s
by time t, or g(e, t) is predicting that φe is not total. Notice that such
a t always exists because φe is total or g(e, s) is eventually zero.

Define f(s) to be the maximum of t(e, s) over e ≤ s. Then for all e
in Tot, f(s) ≥ φe(s) for all s ≥ t. This is because, by convention the
time at which a computation converges is larger than the output, and
we are choosing f to be the maximum over all times in a certain set
which contains the times φe(s) converge.

Thus f dominates all total computable functions, and it isX computable
because g is.

We can now construct an example of a noncomplete high set. Using the jump
as an oracle, we build a function f which dominates every total computable func-
tion but does not compute ∅′. We do so by choosing finite ω-strings, i.e. finite
strings of natural numbers, in a similar way as we have done for finite binary
strings.

We’ll set σ0 = ∅. Given σs, define σs+1 as follows: Say that e “looks total
up to n” if there is some t such that φe,t(x) ↓ for all x ≤ n. Notice that ∅′ can
determine if e looks total up to n because this is a Σ0

1 question.

Now look for a τ properly extending σ such that φe(x) ≤ τ(x) for all
σ| < x ≤ |τ | and all e ≤s which look total up to |τ |, and an x such that
Φτ

s (x) ↓≠ K(x). If there is such a τ and x, let σ2s+1 = τ . If not, let σ2s+1 = σ2s.
Similarly, this is a Σ0

1 question, so ∅′ can determine if such a τ exists.

4

Let f =
⋃

s σs. Notice that f is infinite because whenever Φs does not use
the oracle, it cannot compute K(x), and therefore there must be τ which ex-
tends our current σ, because all τ needs to do is add one number larger than
finitely many function values to σ.

Furthermore, f dominates every total computable function. If φk is total, then
it looks total up to n for all n, so for s ≥ k, we are only extending by strings
which dominate φk.

Lastly, f does not compute K. If it did, i.e. Φf
s = K, then it must do so

via Φs for which there were no such τ and x, i.e. for all suitable τ and x,
Φτ

s (x) ↓ implies Φτ
s (x) = K(x). But then K is computable: hard-code in the

information of which e ≤ s are total, and let m be such that all other e ≤ s
have φe diverge on some x ≤ m. That is, we can computably determine for
a fixed s which τ are large enough to be possible extensions of σs. Then to
compute K, hunt for a τ extending σs whose length is at least m which is larger
than all total φe, e ≤ s and has Φτ

s (x) ↓. Then it must be the case that this
converges to K(x), and we’ll eventually find such a τ because Φf

s = K. This is
a contradiction, so f must not compute K.

2.1 High n

A set X if Highn if ∅(n+1) ≡T X(n). In other words, the n-th jump is as big
as it could be assuming X didn’t start out above the jump. Notice that a Highk
set is Highn whenever n < k.

5

	Low Sets
	Low n

	High Sets
	High n

