Trigonometry: Center Stage

(Note to audience: * denotes a fact that you don't need to memorize.)

The cast:

- $\sin (x)$
- $\cos (x)$
- $\tan (x)=\frac{\sin (x)}{\cos (x)}$
- $\sec (x)=\frac{1}{\cos (x)}$
- $\csc (x)=\frac{1}{\sin (x)}$
- $\cot (x)=\frac{1}{\tan (x)}=\frac{\cos (x)}{\sin (x)}$

Sine and Cosine are co-stars in the following useful trig identity...

$$
\sin ^{2}(x)+\cos ^{2}(x)=1
$$

Tangent and Secant are co-stars in the following useful trig identity...

$$
1+\tan ^{2}(x)=\sec ^{2}(x)
$$

*Cotangent and Cosecant star in the off-off-Broadway identity...

$$
1+\cot ^{2}(x)=\csc ^{2}(x)
$$

Cosine is getting a lot of work in those Half-Angle Identities, too!

$$
\begin{aligned}
\sin ^{2}(x) & =\frac{1-\cos (2 x)}{2} \\
\cos ^{2}(x) & =\frac{1+\cos (2 x)}{2}
\end{aligned}
$$

Remember that old triangle act SOHCAHTOA? You know, where

$$
\begin{aligned}
& \sin (x) \text { was } \frac{\text { opposite }}{\text { hypotenuse }}, \\
& \qquad \begin{aligned}
& \cos (x) \text { was } \frac{\text { adjacent }}{\text { hypotenuse }}, \\
& \text { and } \tan (x) \text { was } \frac{\text { opposite }}{\text { adjacent } ?}
\end{aligned}
\end{aligned}
$$

(Those were the days!)
And who could forget our old friend The Unit Circle?
"Oh, costume mistress! How quickly can our trig functions change?!"

- $\frac{d}{d x}(\sin (x))=\cos (x)$
- $\frac{d}{d x}(\cos (x))=-\sin (x)$
- $\frac{d}{d x}(\tan (x))=\sec ^{2}(x)$
- $* \frac{d}{d x}(\sec (x))=\sec (x) \tan (x) \quad$ [Prove this!]
- $* \frac{d}{d x}(\csc (x))=-\csc (x) \cot (x) \quad$ [Prove this!]
- $* \frac{d}{d x}(\cot (x))=-\csc ^{2}(x) \quad$ [Prove this!]
"And how can we find out how much area they'll take up??"
- $\int \sin (x) d x=-\cos (x)+c$
- $\int \cos (x) d x=\sin (x)+c$
- $\int \tan (x) d x=-\ln |\cos (x)|+c$
[Prove this!]
- $* \int \sec (x) d x=\ln |\sec (x)+\tan (x)|+c$
- $* \int \csc (x) d x=\ln |\csc (x)-\cot (x)|+c$
- $\int \cot (x) d x=\ln |\sin (x)|+c$
[Prove this!]
"Last but not least, we'd like to thank our wonderful crew!"
$\sin ^{-1}(x)$:
- Helped out $\sin (x)$ in the identity

$$
\sin ^{-1}(\sin (x))=x=\sin \left(\sin ^{-1}(x)\right) ;
$$

- Has the wonderful properties

$$
\begin{gathered}
\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}} \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c
\end{gathered}
$$

$\cos ^{-1}(x)$:

- Helped out $\cos (x)$ in the identity

$$
\cos ^{-1}(\cos (x))=x=\cos \left(\cos ^{-1}(x)\right) ;
$$

- Has the reliable property

$$
\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}} .
$$

$\tan ^{-1}(x)$:

- Helped out $\tan (x)$ in the identity

$$
\tan ^{-1}(\tan (x))=x=\tan \left(\tan ^{-1}(x)\right)
$$

- Has the useful properties

$$
\begin{gathered}
\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}, \\
\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c .
\end{gathered}
$$

$\sec ^{-1}(x)$:

- Helped out $\sec (x)$ in the identity

$$
\sec ^{-1}(\sec (x))=x=\sec \left(\sec ^{-1}(x)\right) ;
$$

- Offered us the following services:

$$
\begin{gathered}
\frac{d}{d x}\left(\sec ^{-1}(x)\right)=\frac{1}{x \sqrt{x^{2}-1}}, \\
\int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \sec ^{-1}\left(\frac{x}{a}\right)+c .
\end{gathered}
$$

[Questionnaire: How can we get $\int \sin ^{-1}(x) d x, \int \tan ^{-1}(x) d x$, etc.?]

