Math 2 - Practice Midterm 2

1. Sketch the region bounded by the graphs of the equations $y=-x^{2}$ and $y=x^{2}-8$. Find the area by integrating with respect to x.
2. Find the area of the region between the graphs of the equations $y=\cos \left(\frac{1}{2} x\right)$ and $y=\sin (x)$ from $x=\pi / 3$ to $x=\pi$. [Note: The graphs do not intersect on the interval $(\pi / 3, \pi)$.]
3. Consider the region R bounded by the graphs of the equations $y=(x-5)^{2}$ and $y=4$.
(a) Find the volume of the solid generated by revolving the region R about the x-axis.
(b) Find the volume of the solid generated by revolving the region R about the line $y=4$.
4. Consider the region R bounded by the graphs of the equations $y=\sqrt{x}, x=0$ and $y=2$.
(a) Find the volume of the solid generated by revolving the region R about the y-axis.
(b) Find the volume of the solid generated by revolving the region R about the line $x=4$.
(c) Find the volume of the solid generated by revolving the region R about the line $x=-1$.
5. A solid has as its base the region in the $x y$-plane bounded by the graphs of $y=x$ and $y=-x^{2}$. If every cross section by a plane perpendicular to the x-axis is a rectangle with height equal to one half the length of its base, find the volume of the solid.
6. Using a definite integral, derive a formula for the volume of right circular cone with height h and radius r.
7. Set up an integral that can be solved to find the arc length of the curve $y=\cos ^{8}\left(x^{4}\right)$ from the point $(0,1)$ to $(\sqrt[4]{\pi / 2}, 0)$.
8. Find the length of the graph of $y=2 x^{3 / 2}$ from the point $(1,2)$ to the point $(4,16)$.
9. Using a definite integral, derive a formula for the surface area of a sphere of radius r.
