Math 2, Winter 2016
DALy HOMEWORK #12 — SOLUTIONS
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Solution A. We can interpret the integral in terms of areas, since the region under the
function is a trapezoid:
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The right side’s height is b, the left side’s height is a, and the width of the bottom is b — a.
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Therefore, the area is / rdr=3(b+a)(b—a)= 5

Solution B. We use the definition of the integral as a limit of Riemann sums, with
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Solution C. We use the fundamental theorem of calculus: since %xQ is an antiderivative

of x,
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4.3.3. Let g(x) = / f(t)dt, where f is the function whose graph is shown.
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(a) FEwvaluate g(0), g(1), g(2), g(3), and g(6).

Solution. Since g is the area function of f starting at x = 0, we can evaluate g by
taking the integral, which we can interpret in terms of areas.

4(0) = / £(t)ydt = 0:
g(1) = / F(t)ydt =2
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(b) On what interval is g increasing?

Solution. By the fundamental theorem of calculus, f is the derivative of g. Therefore,
g is increasing when f is positive, which is on the interval (0, 3).

(c) Where does g have a mazimum value?

Solution. Since g is continuous, and since it is increasing for < 3 and decreasing for
x > 3, it has an absolute maximum value at x = 3.

(d) Sketch a rough graph of g.

Solution. Again, f is the derivative of g; so g is concave up where f is increasing, and
g is concave down where f is decreasing. This, along with the results of parts (a) through
(c), helps us sketch the graph; see the back of the book for the picture.
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4.3.8. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of

g(x) = /j (2+ t4)5 dt.
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Solution. T = e [/1 (2 + t4)5 dt} = (2 + x4)5.

4.3.10. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of

g(r) = /OT\/m dx.
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Solution. d_g = [/ Va2 +4 dx} =Vr2+4.
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4.3.22. FEwvaluate / (1 + %U4 — %ug) du.
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4.3.26. Evaluate/ mdx.
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Solution. Notice that 7 is a constant, so it has 7z as an antiderivative. Thus
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4.3.28. FEvaluate / (4 —t)Vtdt.
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Solution.
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