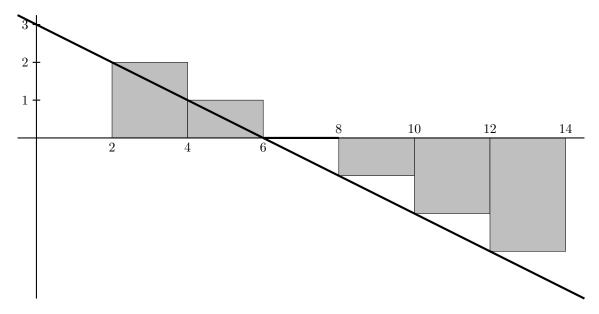
Math 2, Winter 2016

Daily Homework #13 — Solutions

4.2.1. Evaluate the Riemann sum for $f(x) = 3 - \frac{1}{2}x$, $x \le x \le 14$, with six subintervals, taking the sample points to be left endpoints. Explain, with the aid of a diagram, what the Riemann sum represents.

Solution.
$$\Delta x = \frac{b-a}{n} = \frac{14-2}{6} = 2$$
, so the Riemann sum is
$$f(2) \cdot 2 + f(4) \cdot 2 + f(6) \cdot 2 + f(8) \cdot 2 + f(10) \cdot 2 + f(12) \cdot 2$$
$$= (2+1+0-1-2-3) \cdot 2$$
$$= -6$$

So the Riemann sum equals -6. The Riemann sum represents the area under the line $f(x) = 3 - \frac{1}{2}x$; it is an approximation of $\int_2^{14} \left(3 - \frac{1}{2}x\right) dx$, as illustrated:



4.2.47. Write as a single integral in the form $\int_a^b f(x) dx$:

$$\int_{-2}^{2} f(x) \, dx + \int_{2}^{5} f(x) \, dx - \int_{-2}^{-1} f(x) \, dx$$

Solution. The first two pieces sum to $\int_{-2}^{5} f(x) dx$, and then taking away the third piece yields $\int_{-1}^{5} f(x) dx$.

4.2.55. Use the properties of integrals to verify the inequality without evaluating the integral:

$$\int_0^4 (x^2 - 4x + 4) \, dx \ge 0.$$

Solution. $x^2 - 4x + 4 = (x - 4)^2$, which cannot be negative; so $x^2 - 4x + 4 \ge 0$. So,

$$\int_0^4 (x^2 - 4x + 4) \, dx \ge \int_0^4 0 \, dx = 0.$$

4.3.31. Evaluate $\int_0^{\pi/4} \sec^2(t) dt$.

Solution. Recall that $\frac{d}{dt}\tan(t) = \sec^2(t)$, so $\tan(t)$ is an antiderivative of $\sec^2(t)$. So, using the Fundamental Theorem of Calculus,

$$\int_0^{\pi/4} \sec^2(t) dt = \tan(t) \Big|_{t=0}^{t=\pi/4} = \tan(\pi/4) - \tan(0) = 1 - 0 = 1.$$

4.3.34. Evaluate $\int_{1}^{2} \frac{s^4 + 1}{s^2} ds$.

Solution.

$$\int_{1}^{2} \frac{s^{4} + 1}{s^{2}} ds = \int_{1}^{2} \left(\frac{s^{4}}{s^{2}} + \frac{1}{s^{2}}\right) ds = \int_{1}^{2} \left(s^{2} + s^{-2}\right) ds$$
$$= \left(\frac{1}{3}s^{3} - s^{-1}\right)\Big|_{s=1}^{s=2} = \left(\frac{1}{3}2^{3} - \frac{1}{2}\right) - \left(\frac{1}{3}1^{3} - \frac{1}{1}\right) = \frac{17}{6}.$$

4.3.38. Evaluate
$$\int_{-2}^{2} f(x) dx$$
 where $f(x) = \begin{cases} 2 & \text{if } -2 \le x \le 0; \\ 4 - x^2 & \text{if } 0 < x \le 2. \end{cases}$

Solution. We can break the integral into two pieces:

$$\int_{-2}^{2} f(x) \, dx = \int_{-2}^{0} 2 \, dx + \int_{0}^{2} \left(4 - x^{2}\right) \, dx.$$

Now we use the Fundamental Theorem on each piece separately:

$$\int_{-2}^{0} 2 \, dx = 2x \Big|_{x=-2}^{x=0} = 2(0) - 2(-2) = 4;$$

and

$$\int_0^2 \left(4 - x^2\right) dx = \left(4x - \frac{1}{3}x^3\right)\Big|_{x=0}^{x=2} = \left(4(2) - \frac{1}{3}(2^3)\right) - \left(4(0) - \frac{1}{3}(0^3)\right) = \frac{16}{3}.$$

So the total integral lis $4 + \frac{16}{3} = \frac{28}{3}$.

5.5.1. Find the average value of $f(x) = 4x - x^2$ on [0, 4].

Solution.

$$\int_0^4 \left(4x - x^2\right) dx = \left(2x^2 - \frac{1}{3}x^3\right)\Big|_{x=0}^{x=4} = \left(2(4^2) - \frac{1}{3}(4^3)\right) - \left(2(0^2) - \frac{1}{3}(0^3)\right) = \frac{32}{3},$$

so the average value is $\frac{1}{4} \cdot \frac{32}{3} = \frac{8}{3}$.

5.5.2. Find the average value of $f(x) = \sin(4x)$ on $[-\pi, \pi]$.

Solution.

$$\int_{-\pi}^{\pi} \sin(4x) \, dx = -\frac{1}{4} \cos(4x) \Big]_{x=-\pi}^{x=\pi} = -\frac{1}{4} \cos(4\pi) - \left(-\frac{1}{4} \cos(-4\pi)\right) = -\frac{1}{4} + \frac{1}{4} = 0,$$

so the average value is $\frac{1}{2\pi} \cdot 0 = 0$.

5.5.15. Find the average value of f (shown in a diagram) on [0,8].

Solution. We can find $\int_0^8 f(x) dx$ by interpreting it as the combined areas of a bunch of triangles and rectangles in the usual way. Doing this results in $\int_0^8 f(x) dx = 9$, so the average value of f is $\frac{9}{8}$.