Lab \#3
 Good Times With Cosets

Consider the group \mathbb{Z}_{12} and its subgroup $H=\{0,4,8\}$, and define the set

$$
\mathcal{C}=\left\{a+H \mid a \in \mathbb{Z}_{12}\right\}
$$

to be the set of distinct cosets of H in \mathbb{Z}_{12}.

1. According to Lagrange's Theorem, how many elements will the set \mathcal{C} have?
2. What is the set \mathcal{C} ?
3. Suppose we define an operation on \mathcal{C} by

$$
(a+H) \star(b+H)=(a+b)+H
$$

where $(a+b)$ is addition in \mathbb{Z}_{12}. Make a Cayley table of \mathcal{C} under the operation \star.
4. Prove that \mathcal{C} is a group under \star.
5. What are some interesting properties of (\mathcal{C}, \star) ? Is it Abelian? Cyclic? etc.
6. Construct a Cayley table of the group \mathbb{Z}_{12} under addition modulo 12, but order the elements of \mathbb{Z}_{12} like so: $0,4,8,1,5,9,2,6,10,3,7,11$.
7. What do you notice about this Cayley table and the table for \mathcal{C} ?
8. (\mathcal{C}, \star) should be isomorphic to one of your favorite groups. What is that group? Construct a map from \mathcal{C} to that group and show it is an isomorphism.

