October 14, 2008

Names:

Lab #3

Good Times With Cosets

Consider the group \mathbb{Z}_{12} and its subgroup $H = \{0, 4, 8\}$, and define the set

 $\mathcal{C} = \{a + H \mid a \in \mathbb{Z}_{12}\}$

to be the set of distinct cosets of H in \mathbb{Z}_{12} .

1. According to Lagrange's Theorem, how many elements will the set \mathcal{C} have?

2. What is the set C?

3. Suppose we define an operation on \mathcal{C} by

$$(a+H) \star (b+H) = (a+b) + H$$

where (a + b) is addition in \mathbb{Z}_{12} . Make a Cayley table of \mathcal{C} under the operation \star .

4. Prove that ${\mathcal C}$ is a group under $\star.$

5. What are some interesting properties of (\mathcal{C}, \star) ? Is it Abelian? Cyclic? etc.

6. Construct a Cayley table of the group \mathbb{Z}_{12} under addition modulo 12, but order the elements of \mathbb{Z}_{12} like so: 0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11.

7. What do you notice about this Cayley table and the table for C?

8. (\mathcal{C}, \star) should be isomorphic to one of your favorite groups. What is that group? Construct a map from \mathcal{C} to that group and show it is an isomorphism.