Math 31

Final - Practice Exam

Grading

- Solutions must be **justified with full sentences**.
- The clarity of your explanations will enter into the appreciation of your work.

Problem	1	2	3	4	5	6	7	8	9	Total
Points	5	6	6	5	6	5	5	6	6	50
Score										

1. (5 points) Let $(A, +, \cdot)$ be an integral domain and set

$$S := \{(a, b), a, b \in A, b \neq 0\} = A \times A \setminus \{0\}.$$

Show that for $(a, b), (c, d) \in S$ the relation

$$(a,b) \sim (c,d) \Leftrightarrow ad = bc$$

is an equivalence relation.

2. (6 points) Let a = (134) and b = (256) be two elements in (S_6, \circ) .

a. Determine the order $\operatorname{ord}(a \circ b)$ of $a \circ b$.

b. How many elements does the subgroup $H = \langle a, b \rangle$ generated by *a* and *b* have? Justify your answer.

c. Is *H* an abelian subgroup? Justify your answer.

3. (6 points) Let

$$\mathcal{T} = \left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right), a, b, c \in \mathbb{R} \right\}$$

be the set of upper triangular matrices and $(\mathcal{T},+,\cdot)$ be the corresponding ring with matrix addition and multiplication.

a. Show that the function $f: \mathcal{T} \to \mathbb{R} \times \mathbb{R}$ defined by

$$f\left(\begin{array}{cc}a&b\\0&c\end{array}\right):=(a,c)$$

is a ring homomorphism.

b. Determine the kernel ker(f) and the image $f(\mathcal{T})$ of f. Simplify your answer as much as possible.

4. (5 *points*) Consider the cyclic group $(\mathbb{Z}_n, +_n)$. For r in $\{1, 2, ..., n\}$ show that: The subgroup $\langle r \rangle$ of \mathbb{Z}_n generated by r is equal to \mathbb{Z}_n if and only if r and n are relatively prime.

Note: r and n are *relatively prime* if 1 is the only common factor of r and n.

5. (6 *points*) Consider the product ring $\mathbb{Z} \times \mathbb{Z}$. Let $J \lhd \mathbb{Z} \times \mathbb{Z}$ be the ideal

$$J = \langle 3 \rangle \times \mathbb{Z} = \{(3n,m), n,m \in \mathbb{Z}\}.$$

a. Determine whether or not *J* is a prime ideal in $\mathbb{Z} \times \mathbb{Z}$.

b. Determine whether or not *J* is a maximal ideal in $\mathbb{Z} \times \mathbb{Z}$.

6. (*5 points*) Consider the following graph Γ :

a. Show that $(Aut(\Gamma), \circ)$, the automorphism group of Γ , is (isomorphic to) a subgroup of (S_5, \circ) .

b. Is $(Aut(\Gamma), \circ)$ abelian? Justify your answer.

c. How many elements does $(Aut(\Gamma), \circ)$ have? Justify your answer.

d. Determine $(Aut(\Gamma), \circ)$.

7. (*5 points*) Draw a Cayleygraph of $(Aut(\Gamma), \circ)$ where Γ is the graph from **problem 6**.

Hint: Three elements are sufficient to generate $(Aut(\Gamma), \circ)$. Which part of the graph is repeated?

8. (6 *points*) Let $(A, +, \cdot)$ be an integral domain. Recall that $(A, +, \cdot)$ can be extended to a field A^* of "fractions" whose elements are equivalence classes in $A \times (A \setminus \{0\})$. For $(a, b), (r, s) \in A \times (A \setminus \{0\})$ we have

$$(a,b) \sim (r,s) \Leftrightarrow as = br.$$

Multiplication and addition are defined by

$$[a,b] + [c,d] = [ad + bc,bd]$$
 and $[a,b] \cdot [c,d] = [ac,bd]$.

a. If [a, b] = [r, s] and [c, d] = [t, u], prove that [a, b] + [c, d] = [r, s] + [t, u].

b. Show that A^* and A have the same characteristic, i.e. $char(A) = char(A^*)$.

9. (6 points) Let $(A, +, \cdot)$ be a ring. Let $B \leq A$ be a subring and $J \triangleleft A$ an ideal in A.

a. Show that $B + J = \{b + j, \text{ where } b \in B \text{ and } j \in J\}$ is a subring.

b. Show that $B \cap J$ is an ideal in the subring $(B, +, \cdot)$.

c. You may assume that $f : B \to (B + J)/J, b \mapsto f(b) := (b + 0) + J = b + J$ is a ring homomorphism. Determine its kernel ker(f) and its image f(B). Simplify your answer as much as possible.

d. Apply the fundamental homomorphism theorem for rings to $f : B \to (B+J)/J$.