Math 31: Abstract Algebra Fall 2017 - Homework 7

Return date: Wednesday 11/01/17

keywords: homomorphism theorem, graph automorphisms

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.

exercise 1. (4 points) Let $f : A \to C$ and $g : B \to D$ be two functions. Let $f \times g : A \times B \to C \times D$ be function defined by

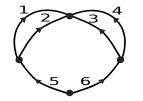
$$(f \times g)(a,b) := (f(a),g(b))$$
 for all $(a,b) \in A \times B$.

Show that $f \times g$ bijective $\Leftrightarrow f$ and g bijective.

exercise 2. (6 points) Let (G, \cdot) and (H, \cdot) be two groups. Let furthermore $N \triangleleft G$ be a normal subgroup of G and $M \triangleleft H$ be a normal subgroup of H.

- a) Show that the function $f: G \times H \to (G/N) \times (H/M), (a, b) \mapsto f(a, b) := (Na, Mb)$ is a surjective homomorphism.
- b) Find the kernel $\ker(f)$ of f.
- c) Use the homomorphism theorem to conclude that $(G \times H)/(N \times M) \simeq (G/N) \times (H/M)$.

exercise 3. (7 points) Let Γ be the following graph with edges $E = \{1, 2, 3, 4, 5, 6\}$.



- a) Show that $\operatorname{Aut}(\Gamma)$ is (isomorphic to) a subgroup of (S_4, \circ) .
- b) Show that $\operatorname{Aut}(\Gamma)$ contains an element r of order 4 and find $\#\operatorname{Aut}(\Gamma)$.
- c) Show that $Aut(\Gamma)$ is a non-abelian group.
- d) Draw the Cayley graph of $(\operatorname{Aut}(\Gamma), \circ)$ with generators r and s, where s is an element of order 2. Then look up the subgroups of S_4 and decide to which group $\operatorname{Aut}(\Gamma)$ is isomorphic.

exercise 4. (3 points) Let $\Gamma := \Gamma(\mathbb{Z}_5, \{1\})$ be the Cayley graph of \mathbb{Z}_5 generated by $\{1\}$. Show that $\operatorname{Aut}(\Gamma) \simeq (\mathbb{Z}_5, +_5)$. Note: In general $\operatorname{Aut}(\Gamma(\mathbb{Z}_n, \{1\})) \simeq (\mathbb{Z}_n, +_n)$.

_ | _

,,

F.

even 3? I graph
a) Show that Ant (I)
$$\stackrel{1}{\simeq} G^{*}$$
, $G^{*} \leq S_{4}$
(if $f \in Ant(I)$, i) we know; if $v \in V$ is a vortex
then $f(v \in (v)) = v = (v)$, here
 $f_{v}(A) = A$ and $f_{v}(B) = B$
L) Lo 2 ng at the edge (we have two options
a) I stays with C or b) I good to D
h both Cares the mage of S and 6 under for
choody defined.
L) As $f(I) de from f_{v}(I)$ and $f_{v}(6)$ we not that
 $f = choody completely defined by
 $f(I) = A + I(I) = C + S = 2 = A + I(I) + C + I(I) = C + S = 2 = A + I(I) + S + I(I) = C + S = 2 = A + I(I) + S + I(I) = C + S = 2 = A + I(I) + S + I(I) = C + S = 2 = A + I(I) + S + I(I) = C + S = A + I(I) + S + I(I) = C + S = A + I(I) + S + I(I) = C + S = A + I(I) + S + I(I) = C + S = A + I(I) + I(I) = A + I(I) = C + S = A + I(I) + I(I) = A + I(I) = C + S + I(I) + I(I) = A + I(I) = A + I(I) = A + I(I) + I(I) = A + I(I)$$

The element of order 4
$$\otimes$$
 $v = (1423) = f_6$
c) $(Take s= (12) = f_1 \cdot Then
 $(12) \circ (1423) = (\frac{1}{4} \frac{2}{3} \frac{3}{2} \frac{4}{12}) = (14) \circ (23) = f_4$
 $(1423) \circ (12) = (\frac{1}{3} \frac{2}{4} \frac{3}{12}) = (13) \circ (24) = f_5$
Here solv \pm Vos and Aut (E) \gg hot abelian.
d) Draw the Cayley graph $: \mathbb{E} (Aut(\Gamma), \mathbb{E}v_{15})$
solve f_2
This group \otimes solve supplies to D_8 , the symmetry
group of the square as S_4 Gatans only one
group of order g .
where $f: \Gamma = \Gamma(\mathbb{Z}_5, \mathbb{E})^2$
 $f = \frac{3}{4} \int_{-2}^{2} 12 \int_{-2}^{2} 12 \int_{-2}^{3} 12 \int$$

$$f_{V}(o) = K \implies f_{V}(1) = k + 51 \implies f_{V}(2) = k + 52$$

$$morphism \qquad \implies f_{V}(k+5) = k$$
Thus the as the graph morphism must respect
and points and directions of arrows.
Thus are a group of possibilities for full.
Hence And (I) = (RS1+5)
The same argument sapply to (Ruith) and we get
$$Aut (F(Rh, E13)) = (Ruith)$$

-5-