Test your knowledge

True false questions (1 point each)

- 1. $+_4$ is an operation on the set $\mathbb{Z}_2 = \{0, 1\}$. \bigcirc True \bigcirc False **False.** This operation is not closed, as $1 +_4 1 = 1 + 1 \mod 4 = 2$, but 2 is not in \mathbb{Z}_2 .
- 2. Let * be an operation on a set A. If (A, *) has a neutral element e, then e is unique. \bigcirc True \bigcirc False **True.** Let e_1, e_2 be two neutral elements in A, then $e_1 = e_1 * e_2 = e_2$.
- 3. Let (G, \cdot) be a group and $a, b \in G$. Then $(ab)^2 = a^2b^2$. \bigcirc True \bigcirc False False. In general $(ab)^2 = abab \neq aabb = a^2b^2$.
- 4. Let (G, ·) be a group and H and K subgroups of G. Then H ∪ K is a subgroup of G. ○ True ○ False
 False. Counterexample: (2) and (3) are subgroups of (Z, +), but (2) ∪ (3) is not a subgroup, as 3 - 2 = 1 ∉ (2) ∪ (3).
- 5. The set $H = \{f : \mathbb{R} \to \mathbb{R} \mid f(x) \ge 0 \text{ for all } x \in \mathbb{R}\}$ is a subgroup of $(\mathcal{F}(\mathbb{R}), +)$. \bigcirc True \bigcirc False **False.** The function $g : \mathbb{R} \to \mathbb{R}, x \mapsto g(x) = 1$ is in H, but -g is not in H.
- 6. Let (G, \cdot) be a group, $a, b \in G$ fixed and $f : G \to G, x \mapsto f(x) = axb$. Then f is bijective. \bigcirc True \bigcirc False **True.** The inverse function f^{-1} is given by $f^{-1}(x) := a^{-1}xb^{-1}$ for all $x \in G$.
- 7. Let (G, \cdot) be a group. $S \subset G$, such that #S = n and $\langle S \rangle = G$. Then G has only finitely many elements. \bigcirc True \bigcirc False False. $(\mathbb{Z}, +) = \langle 1 \rangle$.
- 8. If G and H are groups, such that #G = n and #H = m. Then $\#(G \times H) = n + m$. \bigcirc True \bigcirc False False. It follows from the definition of the cartesian product that $\#(G \times H) = n \cdot m$.
- 9. $(\mathcal{F}(\mathbb{R}), \cdot)$ is a group with neutral element $1 : \mathbb{R} \to \mathbb{R}, x \mapsto 1(x) = 1$. \bigcirc True \bigcirc False **False.** The inverse function for a function f would be $\frac{1}{f}$, but if f(x) = 0 this function is not defined for x.
- 10. $(\mathbb{Q}, +)$ is isomorphic to $(\mathbb{Z}, +)$. **Hint:** If $F : \mathbb{Q} \to \mathbb{Z}$ is an isomorphism. If F(q) = 1, what is $F(\frac{q}{2})$? \bigcirc True \bigcirc False **False.** We get $F(\frac{q}{2}) + F(\frac{q}{2}) = F(\frac{q}{2} + \frac{q}{2}) = F(q) = 1$, hence $2F(\frac{q}{2}) = 1$ or $F(\frac{q}{2}) = \frac{1}{2}$. But $\frac{1}{2}$ is not in \mathbb{Z} . Hence there can not be such an isomorphism.

Long answer questions

question 1 (5 points) Let $G = \{e, a, b, c\}$ be a set of four elements, where e denotes the neutral element. Using an operation table, find all possible groups with four elements, where each element is its own inverse.

Solution: Denote by * the operation. As (G, *) has to be a group, we have as each element is its own inverse:

*	e	a	b	с
e	e	a	b	с
a	a	е		
b	b		е	
с	с			е

The rule is that each element occurs **exactly once** in each column and each row. We look at a * b. By this rule (look at the corresponding row **and** column) the only option is a * b = c. By the same argument b * a = c. It then follows that a * c = c * a = b. Finally it follows that b * c = c * b = a. Hence the table is

*	e	a	b	с
е	e	a	b	с
а	a	е	с	b
b	b	с	е	a
с	с	b	a	е

This means that this group is isomorphic to $(\mathbb{Z}_2 \times \mathbb{Z}_2, +_2 \times +_2)$.

question 2 (5 points) Let (G, \cdot) be a group and $H = \langle \{a, b\} \rangle$ be the subgroup generated by the elements a and b, which satisfy the equations

$$a^2 = e$$
 , $b^3 = e$, $ab = ba$

a) Show that H is an abelian group. **Proof:** As ab = ba this implies

$$ab = ba$$
 , $ab^{-1} = b^{-1}a$, $a^{-1}b = ba^{-1}$, $a^{-1}b^{-1} = b^{-1}a^{-1}$.

Let h_1 and h_2 be two elements in H. Then h_1 is sequence of letters in the set $\{a, b, a^{-1}, b^{-1}\}$ and so is h_2 . The above conditions imply that we can change the order of those letters arbitrarily. Especially that implies that

$$h_1 \cdot h_2 = h_2 \cdot h_1$$

This implies that H is abelian.

b) How many different elements can H contain at most?

Solution: As $a^2 = e$, we have that $a^{-1} = a$. As $b^3 = e$, we have that $b^{-1} = b^2$. We get that

$$H = \{e, a, b, b^2, ab, ab^2\}$$

All other words in $\{a, b, b^2\}$ can be reduced to the elements above as H is abelian.