Math 31: Exam 2 Practice

Date: 10/24/19

Test your knowledge

True/fa	alse q	uestions
---------	--------	----------

	1		
1.	The family of sets $\{A_r \mid r \in \mathbb{R}\}$ defined by $A_r = \{(x,y) \mid x^2 + y^2 = r^2\}$ $\mathbb{R} \times \mathbb{R}$.	forms a p	oartition of
2.	Let $\langle G, \cdot \rangle$ be a group and H a subgroup. If $a \notin Hb$, then $Ha \neq Hb$.	O True	○ False
3.	Let $\langle G, \cdot \rangle$ be a group and H a subgroup. For a fixed $a \in G$ the function by $f(ah) = ha$ is a bijective function.	$f: aH \to A$ \bigcirc True	Ha defined \bigcirc False
4.	Let $\langle G, \cdot \rangle$ be a group and H a subgroup. Then for any $a \in G$ we have aH G , where $aHa^{-1} = \{aha^{-1} \mid h \in H\}$.	Ia^{-1} is a s \bigcirc True	ubgroup of
5.	Let G be a finite group, and let H and K be subgroups of G with $H \subset H$ $(G:H)=(G:K)(K:H).$	K. Then O True	○ False
6.	Let G be a group. The function $f:G\to G$ defined by $f(x)=x^3$ is a hor	nomorphis True	m.
7.	$\langle \mathcal{F}(\mathbb{R}), +, \cdot \rangle$, where \cdot is function multiplication $((f \cdot g)(x) := f(x)g(x))$, is	a ring. True	○ False
8.	If $\langle A, +, \cdot \rangle$ is a commutative ring and $b \in A$ a divisor of zero. Then n divisor of zero.	b is eithe \bigcirc True	r zero or a False
9.	If n is not a prime then $\langle \mathbb{Z}_n, +_n, \cdot_n \rangle$ is not an integral domain.	O True	○ False

Note:	We have	not covered	the following	ng material.	These	are for	rpractice	after
Friday	's class, a	nd solutions	will be pos	ted online.				

- 10. If A is a ring and $I \triangleleft A$ and $J \triangleleft A$ are ideals then $I \cap J$ is an ideal. \bigcirc True \bigcirc False
- 11. In $\mathbb{Z}_5 \times \mathbb{Z}_5$ the set $B = \{(2n, 2n), n \in \mathbb{Z}_5\}$ is a subring. \bigcirc True \bigcirc False
- 12. In $\mathbb{Z}_5 \times \mathbb{Z}_5$ the set $B = \{(2n, 2n), n \in \mathbb{Z}_5\}$ is an ideal.
- 13. Let $\alpha: \langle \mathcal{F}(\mathbb{R}), +, \cdot \rangle \to \langle \mathbb{R}, +, \cdot \rangle$ be the map defined by $\alpha(f) := f(3) f(0)$. Then α is a ring homomorphism.

Long answer questions

Question 1 Prove that $m \sim n$ iff |m| = |n| is an equivalence relation on \mathbb{Z} . Then, describe the partition associated with that equivalence relation.

Question 2 Write down the cosets of the subgroup $\langle \frac{1}{3} \rangle$ generated by $\frac{1}{3}$.

a) Find all of the cosets of the subgroup $\langle \frac{1}{3} \rangle \leq \langle \mathbb{R}^*, \cdot \rangle$, where \mathbb{R}^* is the set of nonzero real numbers. What is the index of $\langle \frac{1}{3} \rangle$ in $\langle \mathbb{R}^*, \cdot \rangle$?

b) Find all of the cosets of the subgroup $\langle \frac{1}{3} \rangle \leq \langle \mathbb{R}, + \rangle$. What is the index of $\langle \frac{1}{3} \rangle$ in $\langle \mathbb{R}, + \rangle$?

Question 3 Find all the normal subgroups (a) of S_3 and (b) of D_4 .
Question 4 Let $K \triangleleft G$ and $H \triangleleft K$. Show that if G/H is an abelian group, then both G/K and K/H are abelian groups.