Math 31: Exam 2 Practice Date: 10/24/19 ## Test your knowledge | True/fa | alse q | uestions | |---------|--------|----------| |---------|--------|----------| | | 1 | | | |----|--|----------------------------------|-------------------------------| | 1. | The family of sets $\{A_r \mid r \in \mathbb{R}\}$ defined by $A_r = \{(x,y) \mid x^2 + y^2 = r^2\}$ $\mathbb{R} \times \mathbb{R}$. | forms a p | oartition of | | 2. | Let $\langle G, \cdot \rangle$ be a group and H a subgroup. If $a \notin Hb$, then $Ha \neq Hb$. | O True | ○ False | | 3. | Let $\langle G, \cdot \rangle$ be a group and H a subgroup. For a fixed $a \in G$ the function by $f(ah) = ha$ is a bijective function. | $f: aH \to A$ \bigcirc True | Ha defined \bigcirc False | | 4. | Let $\langle G, \cdot \rangle$ be a group and H a subgroup. Then for any $a \in G$ we have aH G , where $aHa^{-1} = \{aha^{-1} \mid h \in H\}$. | Ia^{-1} is a s \bigcirc True | ubgroup of | | 5. | Let G be a finite group, and let H and K be subgroups of G with $H \subset H$ $(G:H)=(G:K)(K:H).$ | K. Then O True | ○ False | | 6. | Let G be a group. The function $f:G\to G$ defined by $f(x)=x^3$ is a hor | nomorphis
True | m. | | 7. | $\langle \mathcal{F}(\mathbb{R}), +, \cdot \rangle$, where \cdot is function multiplication $((f \cdot g)(x) := f(x)g(x))$, is | a ring. True | ○ False | | 8. | If $\langle A, +, \cdot \rangle$ is a commutative ring and $b \in A$ a divisor of zero. Then n divisor of zero. | b is eithe \bigcirc True | r zero or a
False | | 9. | If n is not a prime then $\langle \mathbb{Z}_n, +_n, \cdot_n \rangle$ is not an integral domain. | O True | ○ False | | Note: | We have | not covered | the following | ng material. | These | are for | rpractice | after | |--------|-------------|--------------|---------------|--------------|-------|---------|-----------|-------| | Friday | 's class, a | nd solutions | will be pos | ted online. | | | | | - 10. If A is a ring and $I \triangleleft A$ and $J \triangleleft A$ are ideals then $I \cap J$ is an ideal. \bigcirc True \bigcirc False - 11. In $\mathbb{Z}_5 \times \mathbb{Z}_5$ the set $B = \{(2n, 2n), n \in \mathbb{Z}_5\}$ is a subring. \bigcirc True \bigcirc False - 12. In $\mathbb{Z}_5 \times \mathbb{Z}_5$ the set $B = \{(2n, 2n), n \in \mathbb{Z}_5\}$ is an ideal. - 13. Let $\alpha: \langle \mathcal{F}(\mathbb{R}), +, \cdot \rangle \to \langle \mathbb{R}, +, \cdot \rangle$ be the map defined by $\alpha(f) := f(3) f(0)$. Then α is a ring homomorphism. ## Long answer questions **Question 1** Prove that $m \sim n$ iff |m| = |n| is an equivalence relation on \mathbb{Z} . Then, describe the partition associated with that equivalence relation. **Question 2** Write down the cosets of the subgroup $\langle \frac{1}{3} \rangle$ generated by $\frac{1}{3}$. a) Find all of the cosets of the subgroup $\langle \frac{1}{3} \rangle \leq \langle \mathbb{R}^*, \cdot \rangle$, where \mathbb{R}^* is the set of nonzero real numbers. What is the index of $\langle \frac{1}{3} \rangle$ in $\langle \mathbb{R}^*, \cdot \rangle$? b) Find all of the cosets of the subgroup $\langle \frac{1}{3} \rangle \leq \langle \mathbb{R}, + \rangle$. What is the index of $\langle \frac{1}{3} \rangle$ in $\langle \mathbb{R}, + \rangle$? | Question 3 Find all the normal subgroups (a) of S_3 and (b) of D_4 . | |---| | | | | | | | | | | | | | | | Question 4 Let $K \triangleleft G$ and $H \triangleleft K$. Show that if G/H is an abelian group, then both G/K and K/H are abelian groups. | | | | | | | | | | | | | | |