Math 31: Exam 2 Practice

Date: 10/24/19

Test your knowledge

True/false questions

- 1. The family of sets $\{A_r \mid r \in \mathbb{R}\}$ defined by $A_r = \{(x,y) \mid x^2 + y^2 = r^2\}$ forms a partition of $\mathbb{R} \times \mathbb{R}$.
- 2. Let $\langle G, \cdot \rangle$ be a group and H a subgroup. If $a \notin Hb$, then $Ha \neq Hb$.
- 3. Let $\langle G, \cdot \rangle$ be a group and H a subgroup. For a fixed $a \in G$ the function $f : aH \to Ha$ defined by f(ah) = ha is a bijective function.
- 4. Let $\langle G, \cdot \rangle$ be a group and H a subgroup. Then for any $a \in G$ we have aHa^{-1} is a subgroup of G, where $aHa^{-1} = \{aha^{-1} \mid h \in H\}$.
- 5. Let G be a finite group, and let H and K be subgroups of G with $H \subset K$. Then (G:H) = (G:K)(K:H).
- 6. Let G be a group. The function $f: G \to G$ defined by $f(x) = x^3$ is a homomorphism. False
- 7. $\langle \mathcal{F}(\mathbb{R}), +, \cdot \rangle$, where \cdot is function multiplication $((f \cdot g)(x) := f(x)g(x))$, is a ring.
- 8. If $\langle A, +, \cdot \rangle$ is a commutative ring and $b \in A$ a divisor of zero. Then $n \bullet b$ is either zero or a divisor of zero.
- 9. If n is not a prime then $\langle \mathbb{Z}_n, +_n, \cdot_n \rangle$ is not an integral domain.

Note: We have not covered the following material. These are for practice after Friday's class, and solutions will be posted online.

10. If A is a ring and $I \triangleleft A$ and $J \triangleleft A$ are ideals then $I \cap J$ is an ideal.

True

11. In $\mathbb{Z}_5 \times \mathbb{Z}_5$ the set $B = \{(2n, 2n), n \in \mathbb{Z}_5\}$ is a subring.

True

12. In $\mathbb{Z}_5 \times \mathbb{Z}_5$ the set $B = \{(2n, 2n), n \in \mathbb{Z}_5\}$ is an ideal.

False

13. Let $\alpha: \langle \mathcal{F}(\mathbb{R}), +, \cdot \rangle \to \langle \mathbb{R}, +, \cdot \rangle$ be the map defined by $\alpha(f) := f(3) - f(0)$. Then α is a ring homomorphism.

Long answer questions

Question 1 Prove that $m \sim n$ iff |m| = |n| is an equivalence relation on \mathbb{Z} . Then, describe the partition associated with that equivalence relation.

Reflexive: Since |m| = |m|, we have that $m \sim m$.

Symmetric: If $m \sim n$, then |m| = |n|. This implies that |n| = |m| and so $n \sim m$.

Transitive: If $m \sim n$ and $n \sim k$, then |m| = |n| = |k| and so $m \sim k$.

So \sim is an equivalence relation on \mathbb{Z} . The associated partition is

$$\{0\}, \{\pm 1\}, \{\pm 2\}, \{\pm 3\}, \dots$$

Question 2 Write down the cosets of the subgroup $\langle \frac{1}{3} \rangle$ generated by $\frac{1}{3}$.

a) Find all of the cosets of the subgroup $\langle \frac{1}{3} \rangle \leq \langle \mathbb{R}^*, \cdot \rangle$, where \mathbb{R}^* is the set of nonzero real numbers. What is the index of $\langle \frac{1}{3} \rangle$ in $\langle \mathbb{R}^*, \cdot \rangle$?

Note that $\langle 1/3 \rangle = \{\dots, 1/9, 1/3, 1, 3, 9, \dots\} = \langle 3 \rangle$. So any coset would be of the form

$$\langle 1/3 \rangle r = \{ r3^n \mid n \in \mathbb{Z} \}$$

where $0 < r \le 1$. The index is infinite.

b) Find all of the cosets of the subgroup $\langle \frac{1}{3} \rangle \leq \langle \mathbb{R}, + \rangle$. What is the index of $\langle \frac{1}{3} \rangle$ in $\langle \mathbb{R}, + \rangle$?

Note that $\langle 1/3 \rangle = \{\dots, -1, -2/3, -1/3, 0, 1/3, 2/3, 1, \dots\} = \{k/3 \mid k \in \mathbb{Z}\}.$ So any coset would be of the form

$$\langle 1/3 \rangle + r = \{r + k/3 \mid k \in \mathbb{Z}\}\$$

where $r \in \mathbb{R}$. The index is infinite.

Question 3 Find all the normal subgroups (a) of S_3 and (b) of D_4 .

In S_3 : $\{\epsilon\}$, $\{\epsilon$, (123), (132), S_3

In D_4 : $\{\epsilon\}$, $\langle r \rangle$, $\langle r^2 \rangle$, $\langle r^2, f \rangle$, $\langle r^2, rf \rangle$, and D_4 .

Here r is a rotation by 90 degrees cw and f is a reflection.

Question 4 Let $K \triangleleft G$ and $H \triangleleft K$. Show that if G/H is an abelian group, then both G/K and K/H are abelian groups.