Math 31: Final Exam Practice

Date: 11/18/19

Test your knowledge

Truo	/folco	questions

Γrι	ue/false questions		
1.	If A is a ring with n elements and $B \leq A$ a subring. Then $ B $ divides n.	○ True	○ False
2.	If $\langle A,+,\cdot\rangle$ is a commutative ring. Then the cyclic subgroup $\langle x\rangle$ of $\langle x\rangle$ principal ideal $\langle x\rangle$ generated by x .	$\langle 4, + \rangle$ is equal $\langle - \rangle$ True	ual to the Control False
3.	There are finitely many irreducible polynomials in $\mathbb{Z}_5[x]$.	○ True	○ False
4.	If $\langle A, +, \cdot \rangle$ is an integral domain with $char(A) = p$, where p prime. Then	A has p elements \bigcirc True	ements.
5.	The principal ideal $\langle x^2 - 1 \rangle$ in $\mathbb{Z}[x]$ is a prime ideal.	○ True	○ False
6.	Let A be a ring and J be an ideal of A. Every element of A/J is its own if $x+x\in J$ for every $x\in A$.	n negative i	f and only Control False
7.	Every prime ideal of a commutative ring with unity is also a maximal ideal.	○ True	○ False
8.	All the nonzero elements in a ring have the same additive order.	○ True	○ False
9.	In $\mathbb{Z}_3[x]$, $x+2$ is a factor of x^m+2 for all m .	○ True	○ False
10.	Let A be an integral domain. If $(x+1)^2 = x^2 + 1$ in $A[x]$, then A must be	nave charac True	teristic 2.

Long answer questions
Question 1 Let $A \subseteq B$ where A and B are integral domains. Prove that A has characteristic p if and only if B has characteristic p .

Question 3 Compute the field of quotients for integral domain $\mathbb{Z}_5[x]$.

Question 2 Let A be a commutative ring and suppose that a is an idempotent element of A (meaning that $a^2 = a$).

- a) Show that the function $f_a:A\to A$ defined by $f_a(x)=ax$ is a ring homomorphism.
- b) Describe the kernel and the range of f_a . Be as precise as possible.
- c) What does the Fundamental Homomorphism Theorem for rings say about these objects?

Question 4 Show that p(x) is an irreducible polynomial in F[x] (F is a field), then the principal ideal generated by p(x) is a maximal ideal of F[x].

 ${\bf Question}~{\bf 5}$ Determine if each of the following is irreducible.

- 1. $x^2 + x + 1$ in $\mathbb{Z}_2[x]$.
- 2. $x^3 + x + 1$ in $\mathbb{Z}_3[x]$.
- 3. $x^4 + 1$ in $\mathbb{Z}_{11}[x]$.
- 4. $x^4 + 10x^2 + 5$ in $\mathbb{Z}[x]$.