
Math 31: Final Exam Practice

Date: 11/18/19

Test your knowledge

True/false questions

1. If A is a ring with n elements and B ≤ A a subring. Then |B| divides n. © True © False
True. If B is a subring, then it also forms a subgroup. Then apply Lagrange’s Theorem.

2. If 〈A, +, ·〉 is a commutative ring. Then the cyclic subgroup 〈x〉 of (A, +) is equal to the
principal ideal 〈x〉 generated by x. © True © False
False. Consider the commutative ring 〈Q, +, ·〉 and let x = 1/2. Then the cyclic subgroup
generated by x is {

k · 1
2 : k ∈ Z

}
.

The principal ideal generated by x is {
q · 1

2 : q ∈ Q
}

.

In particular, 1/4 is in the principal ideal, but it is not in the cyclic subgroup.

3. There are finitely many irreducible polynomials in Z5[x]. © True © False
False. We showed that x2 + 2 is irreducible in Z5[x]. By Fermat’s Little Theorem, it follows
that x2+5k + 2 is irreducible for k ∈ N.

4. If (A, +, ·) is an integral domain with char(A) = p, where p prime. Then A has p elements.
© True © False

False. Z3[x] has infinitely many elements, but characteristic 3.

5. The principal ideal 〈x2 − 1〉 in Z[x] is a prime ideal. © True © False
False. (x + 1)(x− 1) = x2 − 1 ∈ 〈x2 − 1〉, but x + 1 6∈ 〈x2 − 1〉.

6. Let A be a ring and J be an ideal of A. Every element of A/J is its own negative if and only
if x + x ∈ J for every x ∈ A. © True © False
True. We have that:

−(J + a) = J + a

if and only if
(J + a) + (J + a) = J + 0

if and only if
J + (a + a) = J + 0

if and only if
(a + a) ∈ J + 0 = J.



7. Every prime ideal of a commutative ring with unity is also a maximal ideal. © True © False
False. Consider the ideal {0} of Z consisting only of the zero element. This is a prime ideal
(since Z is an integral domain), but is not maximal (since it is contained in, for instance, the
principal ideal generated by 5).

8. All the nonzero elements in a ring have the same additive order. © True © False
False. This is true for integral domains. However, in Z6, 2 and 3 have different additive orders.

9. In Z3[x], x + 2 is a factor of xm + 2 for all m. © True © False
True. It suffices to show that −2 is a root of xm + 2 for all m. Note that in Z3, −2 = 1. So
we need to show that 1m + 2 = 0 for all m. But this just means that 1 + 2 = 0 in Z3, which is
true.

10. Let A be an integral domain. If (x + 1)2 = x2 + 1 in A[x], then A must have characteristic 2.
© True © False

True. If (x + 1)2 = x2 + 1 in A[x], then we have that x2 + (1 + 1)x + 1 = x2 + 1. Using
the Cancellation Property, we see that (1 + 1)x = 0 in A[x]. Since A[x] is an integral domain
(because A is an integral domain), we have that either 1 + 1 = 0 or x = 0. However, 0 ∈ A and
x 6∈ A, so x 6= 0. Thus it must be that 1 + 1 = 0 and A has characteristic 2.
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Long answer questions

Question 1 Let A ⊆ B where A and B are integral domains. Prove that A has characteristic p if
and only if B has characteristic p.
Since A is a subring of B, it follows that the unity of B is the unity of A. Since subrings are closed
under addition, the result is quickly implied.

Question 2 Compute the field of quotients for the integral domain Z5[x].
Let

S = {(a(x), b(x)) | a(x), b(x) ∈ Z5[x] and b(x) 6= 0}.

Define (a(x), b(x)) ∼ (c(x), d(x)) to mean that a(x)d(x) = b(x)c(x) as in the definition of the field
of quotients. Then the equivalence classes are

[a(x), b(x)] = {(c(x), d(x)) | a(x)d(x) = b(x)c(x)}.

So the field of quotients is

A∗ = {[a(x), b(x)] | a(x), b(x) ∈ Z5[x] and b(x) 6= 0}.

More concretely, this can be seen to be isomorphic to the ring of rational functions with coefficients
in Z5.
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Question 3 Let A be a commutative ring and suppose that a is an idempotent element of A
(meaning that a2 = a).

a) Show that the function fa : A → A defined by fa(x) = ax is a ring homomorphism. Let
x, y ∈ A. Then

fa(x + y) = a(x + y) = ax + ay = fa(x) + fa(y),

where the middle equality is due to the distributive law in the ring A. We also have that

fa(xy) = a(xy)
= a2(xy) since a is an idempotent element
= (ax)(ay) since A is commutative and multiplication is associative
= fa(x)fa(y),

as desired. So fa is a homomorphism.

b) Describe the kernel and the range of fa. Be as precise as possible.
We have that

ker(fa) = {x ∈ A | fa(x) = 0} = {x ∈ A | ax = 0}.

(This is often called an “annihilator” since it is the set of all values which are “annihilated”
by a.)
We also have that

im(fa) = {y ∈ A | fa(x) = y for some x ∈ A} = {y ∈ A | ax = y}.

c) What does the Fundamental Homomorphism Theorem for rings say about these objects?
If we are careful, we can see that the function ga : A→ im(fa) defined by ga(x) = fa(x) is a
surjective ring homomorphism with kernel equal to ker(fa). So, by the FHT, we know that

A/ker(fa) ∼= im(fa)

.
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Question 4 Show that if p(x) is an irreducible polynomial in F [x] (F is a field), then the principal
ideal generated by p(x) is a maximal ideal of F [x].

Proof. The ideal 〈p(x)〉 is maximal if and only if F [x]/〈p(x)〉 is a field. Since F [x] is an integral
domain, we already know that F [x]/〈p(x)〉 is a commutative ring with unity. So it suffices to show
that every nonzero element in F [x]/〈p(x)〉 is invertible.
Let 〈p(x)〉 + a(x) ∈ F [x]/〈p(x)〉 with 〈p(x)〉 + a(x) 6= 〈p(x)〉 + 0 = 〈p(x)〉. Then a(x) 6∈ 〈p(x)〉.
More specifically, this means that a(x) is not a multiple of p(x). Since p(x) is irreducible, the only
polynomials which divide p(x) are constant polynomials (i.e., d(x) = c ∈ F ) or p(x) itself. Since
p(x) does not divide a(x), the only common divisors of p(x) and a(x) are constant polynomials.
Note that 1 is the unique monic polynomial associated to every constant polynomial, we conclude
that gcd[p(x), a(x)] = 1. Since the gcd is a linear combination of a(x) and p(x), there exist b(x)
and q(x) such that

b(x)a(x) + q(x)p(x) = 1.

Rearranging, we see that

a(x)b(x) = (−q(x))p(x) + 1 ∈ 〈p(x)〉+ 1.

Thus
(〈p(x)〉+ a(x))(〈p(x)〉+ b(x)) = 〈p(x)〉+ (a(x)b(x)) = 〈p(x)〉+ 1.

Therefor 〈p(x)〉 + a(x) is invertible. Since 〈p(x)〉 + a(x) was an arbitrary nonzero element in
F [x]/〈p(x)〉, we have that F [x]/〈p(x)〉 is a field. Thus 〈p(x)〉 is maximal.

Question 5 Determine if each of the following is irreducible.

1. x2 + x + 1 in Z2[x].
There are only three monic reducible quadratic polynomials mod 2, because there are only 2
coefficients (0 and 1) to work with. You can easily list them all to check:

(x + 1)(x + 1) = x2 + 0x + 1 = x2 + 1

and
(x + 1)x = x2 + x

and
x · x = x2.

Since the given polynomial is none of these, it must be irreducible.

2. x3 + x + 1 in Z3[x].
Note that 13 +1+1 = 0 in Z3. (If you don’t notice it right away, use Fermat’s Little Theorem
to solve.) Since the polynomial has 1 as a root, it has (x−1) (equivalently (x+2)) as a factor.
This implies that it’s reducible. However, if you’d like to factor it, you can use polynomial
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long division.
x2 +x +2

x +2
)

x3 +0x2 +x +1
−(x3 +2x2)

1x2 +x

−(1x2 +2x)
2x +1

−(2x +1)
0

So,
x3 + x + 1 = (x + 2)(x2 + x + 2).

3. x4 + 1 in Z11[x].
If this is reducible, there are two possible options: either it has a root, or it is a product to
two irreducible quadratics. Pursuing each option, and working out the resulting system of
equations, we can find that can be factored as

(x2 + 8x + 10)(x2 + 3x + 10) = x4 + 1.

So the polynomial is reducible over Z11.

4. x4 + 10x2 + 5 in Z[x].
Let p = 5. Then p | 5, p | 10, p2 - 5, and p - 1. So by EIC, this polynomial is irreducible over
Z.
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