Math 31: Final Exam Practice

Date: 11/18/19

Test your knowledge

True/false questions

- 1. If A is a ring with n elements and $B \leq A$ a subring. Then |B| divides n. \bigcirc True \bigcirc False True. If B is a subring, then it also forms a subgroup. Then apply Lagrange's Theorem.
- 2. If $\langle A, +, \cdot \rangle$ is a commutative ring. Then the cyclic subgroup $\langle x \rangle$ of (A, +) is equal to the principal ideal $\langle x \rangle$ generated by x. \bigcirc True \bigcirc False False. Consider the commutative ring $\langle \mathbb{Q}, +, \cdot \rangle$ and let x = 1/2. Then the cyclic subgroup generated by x is

 $\left\{k \cdot \frac{1}{2} : k \in \mathbb{Z}\right\}.$

The principal ideal generated by x is

$$\left\{q\cdot\frac{1}{2}:q\in\mathbb{Q}\right\}.$$

In particular, 1/4 is in the principal ideal, but it is not in the cyclic subgroup.

- 3. There are finitely many irreducible polynomials in $\mathbb{Z}_5[x]$. \bigcirc True \bigcirc False False. We showed that $x^2 + 2$ is irreducible in $\mathbb{Z}_5[x]$. By Fermat's Little Theorem, it follows that $x^{2+5k} + 2$ is irreducible for $k \in \mathbb{N}$.
- 4. If $(A, +, \cdot)$ is an integral domain with char(A) = p, where p prime. Then A has p elements. \bigcirc True \bigcirc False False. $\mathbb{Z}_3[x]$ has infinitely many elements, but characteristic 3.
- 5. The principal ideal $\langle x^2 1 \rangle$ in $\mathbb{Z}[x]$ is a prime ideal. \bigcirc True \bigcirc False False. $(x+1)(x-1) = x^2 1 \in \langle x^2 1 \rangle$, but $x+1 \notin \langle x^2 1 \rangle$.
- 6. Let A be a ring and J be an ideal of A. Every element of A/J is its own negative if and only if $x + x \in J$ for every $x \in A$. \bigcirc True \bigcirc False True. We have that:

$$-(J+a) = J+a$$

if and only if

$$(J+a) + (J+a) = J+0$$

if and only if

$$J + (a+a) = J + 0$$

if and only if

$$(a+a) \in J + 0 = J.$$

7.	Every prime ideal of a commutative ring with unity is also a maximal ideal. \bigcirc True \bigcirc False. Consider the ideal $\{0\}$ of $\mathbb Z$ consisting only of the zero element. This is a prime ideal (since $\mathbb Z$ is an integral domain), but is not maximal (since it is contained in, for instance, the principal ideal generated by 5).
8.	All the nonzero elements in a ring have the same additive order. \bigcirc True \bigcirc False False. This is true for integral domains. However, in \mathbb{Z}_6 , 2 and 3 have different additive orders.
9.	In $\mathbb{Z}_3[x]$, $x+2$ is a factor of x^m+2 for all m . \bigcirc True \bigcirc False True. It suffices to show that -2 is a root of x^m+2 for all m . Note that in \mathbb{Z}_3 , $-2=1$. So we need to show that $1^m+2=0$ for all m . But this just means that $1+2=0$ in \mathbb{Z}_3 , which is true.
10.	Let A be an integral domain. If $(x+1)^2=x^2+1$ in $A[x]$, then A must have characteristic 2. \bigcirc True. If $(x+1)^2=x^2+1$ in $A[x]$, then we have that $x^2+(1+1)x+1=x^2+1$. Using the Cancellation Property, we see that $(1+1)x=0$ in $A[x]$. Since $A[x]$ is an integral domain (because A is an integral domain), we have that either $1+1=0$ or $x=0$. However, $0\in A$ and $x\notin A$, so $x\neq 0$. Thus it must be that $1+1=0$ and A has characteristic 2.

Long answer questions

Question 1 Let $A \subseteq B$ where A and B are integral domains. Prove that A has characteristic p if and only if B has characteristic p.

Since A is a subring of B, it follows that the unity of B is the unity of A. Since subrings are closed under addition, the result is quickly implied.

Question 2 Compute the field of quotients for the integral domain $\mathbb{Z}_5[x]$. Let

$$S = \{(a(x), b(x)) \mid a(x), b(x) \in \mathbb{Z}_5[x] \text{ and } b(x) \neq 0\}.$$

Define $(a(x), b(x)) \sim (c(x), d(x))$ to mean that a(x)d(x) = b(x)c(x) as in the definition of the field of quotients. Then the equivalence classes are

$$[a(x), b(x)] = \{(c(x), d(x)) \mid a(x)d(x) = b(x)c(x)\}.$$

So the field of quotients is

$$A* = \{ [a(x), b(x)] \mid a(x), b(x) \in \mathbb{Z}_5[x] \text{ and } b(x) \neq 0 \}.$$

More concretely, this can be seen to be isomorphic to the ring of rational functions with coefficients in \mathbb{Z}_5 .

Question 3 Let A be a commutative ring and suppose that a is an idempotent element of A (meaning that $a^2 = a$).

a) Show that the function $f_a:A\to A$ defined by $f_a(x)=ax$ is a ring homomorphism. Let $x,y\in A$. Then

$$f_a(x+y) = a(x+y) = ax + ay = f_a(x) + f_a(y),$$

where the middle equality is due to the distributive law in the ring A. We also have that

$$f_a(xy) = a(xy)$$

= $a^2(xy)$ since a is an idempotent element
= $(ax)(ay)$ since A is commutative and multiplication is associative
= $f_a(x)f_a(y)$,

as desired. So f_a is a homomorphism.

b) Describe the kernel and the range of f_a . Be as precise as possible. We have that

$$\ker(f_a) = \{x \in A \mid f_a(x) = 0\} = \{x \in A \mid ax = 0\}.$$

(This is often called an "annihilator" since it is the set of all values which are "annihilated" by a.)

We also have that

$$im(f_a) = \{ y \in A \mid f_a(x) = y \text{ for some } x \in A \} = \{ y \in A \mid ax = y \}.$$

c) What does the Fundamental Homomorphism Theorem for rings say about these objects? If we are careful, we can see that the function $g_a: A \to \text{im}(f_a)$ defined by $g_a(x) = f_a(x)$ is a surjective ring homomorphism with kernel equal to $\text{ker}(f_a)$. So, by the FHT, we know that

$$A/\ker(f_a) \cong \operatorname{im}(f_a)$$

.

Question 4 Show that if p(x) is an irreducible polynomial in F[x] (F is a field), then the principal ideal generated by p(x) is a maximal ideal of F[x].

Proof. The ideal $\langle p(x) \rangle$ is maximal if and only if $F[x]/\langle p(x) \rangle$ is a field. Since F[x] is an integral domain, we already know that $F[x]/\langle p(x) \rangle$ is a commutative ring with unity. So it suffices to show that every nonzero element in $F[x]/\langle p(x) \rangle$ is invertible.

Let $\langle p(x) \rangle + a(x) \in F[x]/\langle p(x) \rangle$ with $\langle p(x) \rangle + a(x) \neq \langle p(x) \rangle + 0 = \langle p(x) \rangle$. Then $a(x) \notin \langle p(x) \rangle$. More specifically, this means that a(x) is not a multiple of p(x). Since p(x) is irreducible, the only polynomials which divide p(x) are constant polynomials (i.e., $d(x) = c \in F$) or p(x) itself. Since p(x) does not divide a(x), the only common divisors of p(x) and a(x) are constant polynomials. Note that 1 is the unique monic polynomial associated to every constant polynomial, we conclude that $\gcd[p(x), a(x)] = 1$. Since the gcd is a linear combination of a(x) and p(x), there exist b(x) and a(x) such that

$$b(x)a(x) + q(x)p(x) = 1.$$

Rearranging, we see that

$$a(x)b(x) = (-q(x))p(x) + 1 \in \langle p(x) \rangle + 1.$$

Thus

$$(\langle p(x)\rangle + a(x))(\langle p(x)\rangle + b(x)) = \langle p(x)\rangle + (a(x)b(x)) = \langle p(x)\rangle + 1.$$

Therefor $\langle p(x) \rangle + a(x)$ is invertible. Since $\langle p(x) \rangle + a(x)$ was an arbitrary nonzero element in $F[x]/\langle p(x) \rangle$, we have that $F[x]/\langle p(x) \rangle$ is a field. Thus $\langle p(x) \rangle$ is maximal.

Question 5 Determine if each of the following is irreducible.

1. $x^2 + x + 1$ in $\mathbb{Z}_2[x]$.

There are only three monic reducible quadratic polynomials mod 2, because there are only 2 coefficients (0 and 1) to work with. You can easily list them all to check:

$$(x+1)(x+1) = x^2 + 0x + 1 = x^2 + 1$$

and

$$(x+1)x = x^2 + x$$

and

$$x \cdot x = x^2$$
.

Since the given polynomial is none of these, it must be irreducible.

2. $x^3 + x + 1$ in $\mathbb{Z}_3[x]$.

Note that $1^3 + 1 + 1 = 0$ in \mathbb{Z}_3 . (If you don't notice it right away, use Fermat's Little Theorem to solve.) Since the polynomial has 1 as a root, it has (x-1) (equivalently (x+2)) as a factor. This implies that it's reducible. However, if you'd like to factor it, you can use polynomial

long division.

So,

$$x^3 + x + 1 = (x+2)(x^2 + x + 2).$$

3. $x^4 + 1$ in $\mathbb{Z}_{11}[x]$.

If this is reducible, there are two possible options: either it has a root, or it is a product to two irreducible quadratics. Pursuing each option, and working out the resulting system of equations, we can find that can be factored as

$$(x^2 + 8x + 10)(x^2 + 3x + 10) = x^4 + 1.$$

So the polynomial is reducible over \mathbb{Z}_{11} .

4. $x^4 + 10x^2 + 5$ in $\mathbb{Z}[x]$.

Let p = 5. Then $p \mid 5$, $p \mid 10$, $p^2 \nmid 5$, and $p \nmid 1$. So by EIC, this polynomial is irreducible over \mathbb{Z} .