Math 31: Exam 1 Practice Date: 10/03/19 ## Test your knowledge | True/fa | alse q | uestions | |---------|--------|----------| |---------|--------|----------| | LI | le/laise questions | | | | |----|---|---------------------------------|------------|-------| | 1. | $+_4$ is an operation on the set $\mathbb{Z}_2 = \{0, 1\}$. | ○ True | \bigcirc | False | | 2. | Let $*$ be an operation on a set A . If $(A,*)$ has a neutral element e , then | e is unique \bigcirc True | | False | | 3. | Let $\langle G, \cdot \rangle$ be a group and $a, b \in G$. If a and b commute, then a^2 commute | es with b^2 . \bigcirc True | \circ | False | | 4. | Let $\langle G, \cdot \rangle$ be a group and H and K subgroups of G . Then $H \cup K$ is a su | bgroup of (| | False | | 5. | The set $H = \{f : \mathbb{R} \to \mathbb{R} \mid f(x) \ge 0 \text{ for all } x \in \mathbb{R}\}$ is a subgroup of $(\mathcal{F}(\mathbb{R} + \mathbb{R} + \mathbb{R} + \mathbb{R}))$ |), +). | \circ | False | | 6. | Let (G,\cdot) be a group, $a,b\in G$ fixed and $f:G\to G$ be the function define by $f(x)=axb$. Then f is bijective. | ed
() True | \circ | False | | 7. | Let (G,\cdot) be a group. $S\subset G$, such that $ S =n$ and $\langle S\rangle=G$ (i.e., the elegenerate G). Then G has only finitely many elements. | ements in S \bigcirc True | | False | | 8. | If G and H are groups such that $ G =n$ and $ H =m$, then $ G\times H =n$ | $n+m$. \bigcirc True | \circ | False | | 9. | $(\mathcal{F}(\mathbb{R}),\cdot)$ is a group with identity element $\varepsilon_1:\mathbb{R}\to\mathbb{R}$ defined by $\varepsilon_1(x)=$ | 1. O True | \circ | False | - 10. $(\mathbb{Q}, +)$ is isomorphic to $(\mathbb{Z}, +)$. \bigcirc True \bigcirc False **Hint:** Suppose $F : \mathbb{Q} \to \mathbb{Z}$ is an isomorphism. If F(q) = 1, what is $F(\frac{q}{2})$? - 11. Let $p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 4 & 9 & 2 & 3 & 8 & 1 & 6 & 5 \end{pmatrix}$ be a permutation in (S_9, \circ) . Then $p_1 = (17) \circ (24) \circ (68) \circ (395)$. - 12. Let $p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 9 & 5 & 3 & 1 & 2 & 4 & 8 & 6 \end{pmatrix}$ be a permutation in (S_9, \circ) . Then $p_2 = (43517) \circ (296)$. - 13. Let $p_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 4 & 3 & 6 & 5 & 1 & 2 \end{pmatrix}$ be a permutation in (S_9, \circ) . Then $p_3^{37} = p_3$. - 14. For any two cycles $b, c \in (S_n, \circ)$ we have that $c \circ b = b \circ c$. - 15. The set $S_{\mathbb{R}} = \{ f : \mathbb{R} \to \mathbb{R}, f \text{ bijective } \}$ is a subgroup of $(\mathcal{F}(\mathbb{R}), +)$. \bigcirc True \bigcirc False - 16. Let a be an element of order 12 in a group G. Then the order of a^8 is 4. \bigcirc True \bigcirc False - 17. Let G be a group and let $a, b \in G$ with $a \in \langle b \rangle$. Then $\langle a \rangle = \langle b \rangle$ if and only if a and b have the same order. \bigcirc True \bigcirc False ## Long answer questions **Question 1** (5 points) Let (G, \cdot) be a group and $H = \langle \{a, b\} \rangle$ be the subgroup generated by the elements a and b, which satisfy the equations $$a^2 = e \quad , \quad b^3 = e \quad , \quad ab = ba.$$ a) Show that H is an abelian group. b) How many different elements can H contain at most? **Question 2** (5 points) Determine which of the following groups are isomorphic to which others. Prove your answers. $$\mathbb{Z}_8$$, P_3 , $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, D_4 where P_3 is the group of subsets of a three element set.