Math 31: Exam 1 Practice

Date: 10/03/19

Test your knowledge

True/fa	alse q	uestions
---------	--------	----------

LI	le/laise questions			
1.	$+_4$ is an operation on the set $\mathbb{Z}_2 = \{0, 1\}$.	○ True	\bigcirc	False
2.	Let $*$ be an operation on a set A . If $(A,*)$ has a neutral element e , then	e is unique \bigcirc True		False
3.	Let $\langle G, \cdot \rangle$ be a group and $a, b \in G$. If a and b commute, then a^2 commute	es with b^2 . \bigcirc True	\circ	False
4.	Let $\langle G, \cdot \rangle$ be a group and H and K subgroups of G . Then $H \cup K$ is a su	bgroup of (False
5.	The set $H = \{f : \mathbb{R} \to \mathbb{R} \mid f(x) \ge 0 \text{ for all } x \in \mathbb{R}\}$ is a subgroup of $(\mathcal{F}(\mathbb{R} + \mathbb{R} + \mathbb{R} + \mathbb{R}))$), +).	\circ	False
6.	Let (G,\cdot) be a group, $a,b\in G$ fixed and $f:G\to G$ be the function define by $f(x)=axb$. Then f is bijective.	ed () True	\circ	False
7.	Let (G,\cdot) be a group. $S\subset G$, such that $ S =n$ and $\langle S\rangle=G$ (i.e., the elegenerate G). Then G has only finitely many elements.	ements in S \bigcirc True		False
8.	If G and H are groups such that $ G =n$ and $ H =m$, then $ G\times H =n$	$n+m$. \bigcirc True	\circ	False
9.	$(\mathcal{F}(\mathbb{R}),\cdot)$ is a group with identity element $\varepsilon_1:\mathbb{R}\to\mathbb{R}$ defined by $\varepsilon_1(x)=$	1. O True	\circ	False

- 10. $(\mathbb{Q}, +)$ is isomorphic to $(\mathbb{Z}, +)$. \bigcirc True \bigcirc False **Hint:** Suppose $F : \mathbb{Q} \to \mathbb{Z}$ is an isomorphism. If F(q) = 1, what is $F(\frac{q}{2})$?
- 11. Let $p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 4 & 9 & 2 & 3 & 8 & 1 & 6 & 5 \end{pmatrix}$ be a permutation in (S_9, \circ) .

 Then $p_1 = (17) \circ (24) \circ (68) \circ (395)$.
- 12. Let $p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 9 & 5 & 3 & 1 & 2 & 4 & 8 & 6 \end{pmatrix}$ be a permutation in (S_9, \circ) .

 Then $p_2 = (43517) \circ (296)$.
- 13. Let $p_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 4 & 3 & 6 & 5 & 1 & 2 \end{pmatrix}$ be a permutation in (S_9, \circ) .

 Then $p_3^{37} = p_3$.
- 14. For any two cycles $b, c \in (S_n, \circ)$ we have that $c \circ b = b \circ c$.
- 15. The set $S_{\mathbb{R}} = \{ f : \mathbb{R} \to \mathbb{R}, f \text{ bijective } \}$ is a subgroup of $(\mathcal{F}(\mathbb{R}), +)$. \bigcirc True \bigcirc False
- 16. Let a be an element of order 12 in a group G. Then the order of a^8 is 4. \bigcirc True \bigcirc False
- 17. Let G be a group and let $a, b \in G$ with $a \in \langle b \rangle$. Then $\langle a \rangle = \langle b \rangle$ if and only if a and b have the same order. \bigcirc True \bigcirc False

Long answer questions

Question 1 (5 points) Let (G, \cdot) be a group and $H = \langle \{a, b\} \rangle$ be the subgroup generated by the elements a and b, which satisfy the equations

$$a^2 = e \quad , \quad b^3 = e \quad , \quad ab = ba.$$

a) Show that H is an abelian group.

b) How many different elements can H contain at most?

Question 2 (5 points) Determine which of the following groups are isomorphic to which others. Prove your answers.

$$\mathbb{Z}_8$$
, P_3 , $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, D_4

where P_3 is the group of subsets of a three element set.