Date: 10/03/19

Test your knowledge

True/false questions

1. $+_4$ is an operation on the set $\mathbb{Z}_2 = \{0, 1\}$.

False

2. Let * be an operation on a set A. If (A,*) has a neutral element e, then e is unique.

True

3. Let $\langle G, \cdot \rangle$ be a group and $a, b \in G$. If a and b commute, then a^2 commutes with b^2 .

True

4. Let $\langle G, \cdot \rangle$ be a group and H and K subgroups of G. Then $H \cup K$ is a subgroup of G.

False

Counterexample: Consider the group $\langle \mathbb{Z}, + \rangle$. This group has subgroups $\langle 2 \rangle$ and $\langle 3 \rangle$, but $\langle 2 \rangle \cup \langle 3 \rangle$ is not a subgroup since it contains both 2 and 3, but not 2 + 3 = 5.

5. The set $H = \{f : \mathbb{R} \to \mathbb{R} \mid f(x) \ge 0 \text{ for all } x \in \mathbb{R} \}$ is a subgroup of $(\mathcal{F}(\mathbb{R}), +)$.

False

6. Let (G, \cdot) be a group, $a, b \in G$ fixed and $f: G \to G$ be the function defined by f(x) = axb. Then f is bijective.

True

- 7. Let (G, \cdot) be a group. $S \subset G$, such that |S| = n and $\langle S \rangle = G$ (i.e., the elements in S generate G). Then G has only finitely many elements. False Counterexample: Note that $\{1\} \subset \mathbb{Z}, |\{1\}| = 1, \text{ and } \langle \{1\} \rangle = \mathbb{Z}.$
- 8. If G and H are groups such that |G| = n and |H| = m, then $|G \times H| = n + m$.

False

9. $(\mathcal{F}(\mathbb{R}), \cdot)$ is a group with identity element $\varepsilon_1 : \mathbb{R} \to \mathbb{R}$ defined by $\varepsilon_1(x) = 1$.

False

Not every element has an inverse under multiplication. For example, let f(x) = x. If there is a function $f^{-1}(x)$ in this set, then $f \cdot f^{-1} = \varepsilon_1$. So we would have $[f \cdot f^{-1}](0) = \varepsilon_1(0)$, i.e., $0 \cdot f^{-1}(0) = 1$, which is a contradiction.

10.
$$(\mathbb{Q}, +)$$
 is isomorphic to $(\mathbb{Z}, +)$.

False

True

Hint: Suppose $F: \mathbb{Q} \to \mathbb{Z}$ is an isomorphism. If F(q) = 1, what is $F(\frac{q}{2})$?

Suppose $F: \mathbb{Q} \to \mathbb{Z}$ is an isomorphism. Then F is surjective and so there exists a rational number q such that F(q) = 1. Since F is an isomorphism, we have that

$$F(\frac{q}{2}) + F(\frac{q}{2}) = F(\frac{q}{2} + \frac{q}{2}) = F(q) = 1.$$

In other words, $2F(\frac{q}{2}) = 1$ and so $F(\frac{q}{2}) = 1/2$. Since 1/2 is not an integer, we have reached a contradiction.

- 11. Let $p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 4 & 9 & 2 & 3 & 8 & 1 & 6 & 5 \end{pmatrix}$ be a permutation in (S_9, \circ) . Then $p_1 = (17) \circ (24) \circ (68) \circ (395)$.
- 12. Let $p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 9 & 5 & 3 & 1 & 2 & 4 & 8 & 6 \end{pmatrix}$ be a permutation in (S_9, \circ) .

 Then $p_2 = (43517) \circ (296)$.
- 13. Let $p_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 4 & 3 & 6 & 5 & 1 & 2 \end{pmatrix}$ be a permutation in (S_9, \circ) .

 Then $p_3^{37} = p_3$.
- 14. For any two cycles $b, c \in (S_n, \circ)$ we have that $c \circ b = b \circ c$.

False

15. The set $S_{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}, f \text{ bijective } \}$ is a subgroup of $(\mathcal{F}(\mathbb{R}), +)$. False Red flag: $S_{\mathbb{R}}$ uses the operation of function composition, while $\mathcal{F}(\mathbb{R})$ uses the operation of function addition.

We can check that the sum of two bijective functions is not always bijective, and so $S_{\mathbb{R}}$ is not closed under the operation of $\mathcal{F}(\mathbb{R})$. For example, let f(x) = x and g(x) = -x. Then $f, g \in S_{\mathbb{R}}$, but [f+g](x) = x + (-x) = 0 for all x and so clearly is not injective or surjective.

16. Let a be an element of order 12 in a group G. Then the order of a^8 is 4. **False** We know that $a^12 = e$ and that all of the powers $a^0, a, a^2, \ldots, a^11$ are different. To find the order of a^8 , repeatedly multiply it by itself until you get e:

$$\begin{split} &(a^8)^1 \neq e \text{ (since ord}(a) = 12) \\ &(a^8)^2 = a^{16} = a^{12+4} = a^{12}a^4 = a^4 \neq e \\ &(a^8)^3 = (a^8)^2a^8 = a^4a^8 = a^{12} = e. \end{split}$$

17. Let G be a group and let $a, b \in G$ with $a \in \langle b \rangle$. Then $\langle a \rangle = \langle b \rangle$ if and only if a and b have the same order.

This is false if G is an infinite group and a and b both have infinite order. This is true if the orders of a and b are both finite.

Long answer questions

Question 1 (5 points) Let (G, \cdot) be a group and $H = \langle \{a, b\} \rangle$ be the subgroup generated by the elements a and b, which satisfy the equations

$$a^2 = e$$
 , $b^3 = e$, $ab = ba$.

a) Show that H is an abelian group.

Since H is generated by $\{a, b\}$, every element of H is a product of a, b, a^{-1} , and b^{-1} . Note that since ab = ba, we also have that

$$ab^{-1} = b^{-1}bab^{-1} = b^{-1}abb^{-1} = b^{-1}a,$$

$$ba^{-1} = a^{-1}aba^{-1} = a^{-1}baa^{-1} = a^{-1}b.$$

and

$$a^{-1}b^{-1} = (ba)^{-1} = (ab)^{-1} = b^{-1}a^{-1}.$$

Thus all of a, b, a^{-1} , and b^{-1} commute with each other. Therefore, since every element is a product of these elements, H is an abelian group.

b) How many different elements can H contain at most?

There are multiple ways to solve this one. Note that since $a^2 = e$, a is its own inverse. Since $b^3 = e$, b^2 is the inverse of b. So, $\{e, a, b, b^2\} \subset H$. Since ab = ba, each element in H can be written in the form a^nb^m . If n is even, then $a^nb^m = eb^m = b^m$ and so a^nb^m is equal to either b, b^2 , or e. If e is odd, then e is equal to either e in e. So e is equal to either e is equal to either e in e is equal to either e in e i

Question 2 (5 points) Determine which of the following groups are isomorphic to which others. Prove your answers.

$$\mathbb{Z}_8$$
, P_3 , $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, D_4

where P_3 is the group of subsets of a three element set.

All of these groups have order 8. Only \mathbb{Z}_8 is cyclic, so none of the others are isomorphic to it. The group D_4 has an element of order 4, while in P_3 and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ every element has order 2. (You showed in the first homework assignment that every set is its own inverse in P_D .) So D_4 is not isomorphic to any of the others. So we either need to show the remaining two are isomorphic, or find a difference in their group structure.

Claim: $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ is isomorphic to P_3 .

Let $\{a,b,c\}$ be the three element set that P_3 is built from. Consider the function

 $f: \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \to P_3$ defined by f(x,y,z) equals the set containing x a's, y b's, and z c's. For example, $f(0,1,1) = \{b,c\}$. This function is clearly a bijection, since x,y,z are all 0 or 1, and $P_3 = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$. We need to check that it satisfies the isomorphism property: f((x,y,z)+(x',y',z'))=f(x,y,z)+f(x',y',z'). We can see that this holds by considering the operations on each group. In \mathbb{Z}_2 , if two elements are equal, then their sum is 0. Thus the corresponding element in $\{a,b,c\}$ does not appear in image of f. On the other hand, in P_3 , if two sets contain the same element, then their sum does not contain that element (this is precisely the definition of addition here).