Homework 6

(Quotient rings, FHT for rings, prime ideals, maximal ideals, integral domains.)

Due Friday, November 8 at 2:10pm in class.

Note: Be sure to justify your answers. No credit will be given for answers without work/justification. In addition, all written homework assignments should be neat and well-organized; Part A and Part B should be submitted separately.

Part A:

- (1) Chapter 19 A.2 and B.3 (You may use Chapter 18 E.6 from HW05.)
- (2) Let A be a ring.
 - An ideal J is called *semiprime* if, for all $a \in A$, if $a^n \in J$ for some positive integer n, then $a \in J$.
 - An element $a \in A$ is called *nilpotent* if $a^n = \underbrace{a \cdot a \cdots a}_{n \text{ times}} = 0$ for some integer n > 0.

Prove each of the following statements. For each part, you may use the preceding parts even if you are unable to prove them.

- (a) An ideal J of A is semiprime if and only A/J has no nilpotent elements (except 0).
- (b) If A is an integral domain, then A has no nonzero nilpotent elements.
- (c) Every prime ideal in a commutative ring is semiprime.

Part B:

- (1) Prove each of the following statements. For each part, you may use the preceding parts even if you are unable to prove them.
 - (a) The only ideals in a field F are the trivial ideals $\{0\}$ and F.
 - (b) Let A and B be rings. Let $f: A \to B$ be a surjective homomorphism from A to B. If J is an ideal of A such that $\ker(f) \subset J$, then f(J) is an ideal of B.
 - (c) Let A be a ring and B be a field. Let $f: A \to B$ be a surjective homomorphism from A to B. Then $\ker(f)$ is a maximal ideal. (Hint: Use part (b), then part (a). In addition, consider the following: if $a \in A$ and
 - (Hint: Use part (b), then part (a). In addition, consider the following: If $a \in A$ a $j \in J$ such that f(a) = f(j), what can you say about f(a j)?)
 - (d) If A/J is a field, then J is a maximal ideal.
- (2) Chapter 19 D.1 and D.2.