Handout: Proof skills

- (1) Write the negation of each of the following statements.
 - (a) The numbers a and b are in the set S.
 - (b) Either a or b is in the set S.
 - (c) There exists a group G which is not commutative.
 - (d) Every integer is even.
- (2) For each pair of statements p and q below, determine whether the statement "p and q" and the statement "p or q" are true or false.
 - (a) p = "Every group has an identity element."
 - q = "Every group is associative."
 - (b) p = "Every operation is associative."
 - q = "The set \mathbb{Q} with the operation of subtraction forms a group."
 - (c) p = "The group \mathbb{Z}_6 has order 5."
 - q = "The group $\mathbb{Z}_2 \times \mathbb{Z}_4$ has 6 elements."
- (3) Prove the following statement using a direct proof.

Theorem 1. Let a, x, and y be elements of a group G. If $xay = a^{-1}$, then $yax = a^{-1}$.

(4) Prove the following statements using a proof by contradiction.

Theorem 2. If $a, b \in \mathbb{Z}$, then $a^2 - 4b \neq 2$.

Theorem 3. The number $\sqrt{2}$ is irrational.

Theorem 4. There are infinitely many prime numbers.

(5) Prove the following statement by proving its contrapositive.

Theorem 5. Let x and y be integers. If x + y is even, then x and y are both even or x and y are both odd.

(6) Prove the following "if and only if" statement.

Theorem 6. Suppose that a, b, and c are elements of a group G and $c = c^{-1}$. Then, ab = c if and only if abc = e.