
Handout: Proof skills

(1) Write the negation of each of the following statements.

(a) The numbers a and b are in the set S.

Negation: Either a or b is not in the set S.

(b) Either a or b is in the set S.

Negation: Neither a nor b is in the set S.

(c) There exists a group G which is not commutative.

Negation: For all groups G, G is commutative.

(d) Every integer is even.

Negation: There exists an integer which is not even.

(2) For each pair of statements p and q below, determine whether the statement

“p and q” and the statement “p or q” are true or false.

(a) p = “Every group has an identity element.” (true)

q = “Every group is associative.” (true)

“p and q” is true, “p or q” is true.

(b) p = “Every operation is associative.” (false)

q = “The set Q with the operation of subtraction forms a group.” (false)

“p and q” is false, “p or q” is false.

(c) p = “The group Z6 has order 5.”(false)

q = “The group Z2 × Z4 has 6 elements.”(false)

“p and q” is false, “p or q” is false.

(3) Prove the following statement using a direct proof.

Theorem 1. Let a, x, and y be elements of a group G. If xay = a−1, then

yax = a−1.

Note that there are several different correct direct proofs of this theorem. I will

only provide one.

Proof. Let a, x, and y be elements of a group G. Assume that xay = a−1. Then

we know that

a =
(
a−1

)−1
= (xay)−1 = y−1a−1x−1.

Thus

yax = y(y−1a−1x−1)x = (yy−1)a−1(xx−1) = ea−1e = a−1,
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as desired. �

(4) Prove the following statements using a proof by contradiction.

Theorem 2. If a, b ∈ Z, then a2 − 4b 6= 2.

Proof. Assume, towards a contradiction, that a, b ∈ Z and a2 − 4b = 2. Then we

have that

a2 = 4b + 2 = 2(2b + 1).

Thus a2 is an even integer. Note that the square of an odd number is odd:

(2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1,

thus a must be an even integer as well. Say a = 2k for some integer k. Then we

have that

(2k)2 − 4b = 2,

i.e.,

4k2 − 4b = 2.

i.e.,

4(k2 − b) = 2.

However, the left-hand side of this equation is divisible by 4, while the right-hand

side is not divisible by 4. This is a contradiction. Since we have arrived at a

contradiction, it must be that a2 − 4b 6= 2, as desired. �

The following two theorems are classic examples of proof by contradiction and

are very important results for algebra and number theory.

Theorem 3. The number
√

2 is irrational.

Proof. Suppose, towards a contradiction, that
√

2 is a rational number. Then
√

2 = a
b

for some integers a and b, where a
b

is fully reduced. Squaring both sides,

we see that

2 =
a2

b2
,

i.e.,

a2 = 2b2.

So a2 is an even number. Note that the square of an odd number is odd:

(2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1,
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thus a must be an even integer as well. Say a = 2k for some integer k. The we

have that

(2k)2 = 2b2,

i.e.,

4k2 = 2b2.

Dividing by 2, we get

2k2 = b2.

Thus b2 is an even number and, by the same argument above, it follows that b is

even. However, this means that a and b share a factor of 2, while a
b

was assumed

to be fully reduced. This is a contradiction. Therefore, it must be that
√

2 is

irrational. �

Theorem 4. There are infinitely many prime numbers.

Proof. Suppose, towards a contradiction, that there are only finitely many primes,

say p1, p2, p3, . . . , pn. Consider the number p1p2p3 · · · pn+1. For each prime number

pi, the number p1p2p3 · · · pn +1 leaves a remainder of 1 when divided by pi. There-

fore, p1p2p3 · · · pn + 1 is not divisible by any of the prime numbers p1, p2, p3, . . . , pn

and so it must be prime itself. However, p1, p2, p3, . . . , pn was assumed to be a

complete list of primes, and we have reached a contradiction. Thus there are

infinitely many prime numbers. �

(5) Prove the following statement by proving its contrapositive.

Theorem 5. Let x and y be integers. If x+ y is even, then x and y are both even

or x and y are both odd.

Contrapositive: Let x and y be integers. If one x and y is even and one of x

and y is odd, then x + y is odd.

Proof. Suppose that x is an even integer and y is an odd integer. Then x = 2k

and y = 2n + 1 for some integers k and n. We have

x + y = 2k + 2n + 1 = 2(k + n) + 1,

which is odd, as desired. Since addition is commutative, the same follows for x

odd and y even. �

(6) Prove the following “if and only if” statement.
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Theorem 6. Suppose that a, b, and c are elements of a group G and c = c−1.

Then, ab = c if and only if abc = e.

We assume the whole first sentence, and we need to prove the statement

“If ab = c, then abc = e.” and the statement “If abc = e, then ab = c.”

Proof. Suppose that a, b, and c are elements of a group G and c = c−1.

⇒ Assume that ab = c. Multiplying on each side by c, we get

abc = cc

= cc−1 (since c = c−1)

= e.

⇐ Assume that abc = e. Multiplying on each side by c−1, we get

abcc−1 = c−1

ab(cc−1) = c (since c = c−1)

ab = c.

�


