Handout: Proof skills

- (1) Write the negation of each of the following statements.
 - (a) The numbers a and b are in the set S.Negation: Either a or b is not in the set S.
 - (b) Either a or b is in the set S.Negation: Neither a nor b is in the set S.
 - (c) There exists a group G which is not commutative. **Negation:** For all groups G, G is commutative.
 - (d) Every integer is even.

Negation: There exists an integer which is not even.

- (2) For each pair of statements p and q below, determine whether the statement "p and q" and the statement "p or q" are true or false.
 - (a) p = "Every group has an identity element." (true)
 q = "Every group is associative." (true)
 "p and q" is true, "p or q" is true.
 - (b) p = "Every operation is associative." (false) q = "The set \mathbb{Q} with the operation of subtraction forms a group." (false) "p and q" is false, "p or q" is false.
 - (c) p = "The group \mathbb{Z}_6 has order 5." (false) q = "The group $\mathbb{Z}_2 \times \mathbb{Z}_4$ has 6 elements." (false) "p and q" is false, "p or q" is false.
- (3) Prove the following statement using a direct proof.

Theorem 1. Let a, x, and y be elements of a group G. If $xay = a^{-1}$, then $yax = a^{-1}$.

Note that there are several different correct direct proofs of this theorem. I will only provide one.

Proof. Let a, x, and y be elements of a group G. Assume that $xay = a^{-1}$. Then we know that

$$a = (a^{-1})^{-1} = (xay)^{-1} = y^{-1}a^{-1}x^{-1}.$$

Thus

$$yax = y(y^{-1}a^{-1}x^{-1})x = (yy^{-1})a^{-1}(xx^{-1}) = ea^{-1}e = a^{-1},$$

as desired.

(4) Prove the following statements using a proof by contradiction.

Theorem 2. If $a, b \in \mathbb{Z}$, then $a^2 - 4b \neq 2$.

Proof. Assume, towards a contradiction, that $a, b \in \mathbb{Z}$ and $a^2 - 4b = 2$. Then we have that

$$a^2 = 4b + 2 = 2(2b + 1).$$

Thus a^2 is an even integer. Note that the square of an odd number is odd:

$$(2n+1)^2 = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1,$$

thus a must be an even integer as well. Say a = 2k for some integer k. Then we have that

$$(2k)^2 - 4b = 2$$

i.e.,

 $4k^2 - 4b = 2.$

i.e.,

$$4(k^2 - b) = 2.$$

However, the left-hand side of this equation is divisible by 4, while the right-hand side is not divisible by 4. This is a contradiction. Since we have arrived at a contradiction, it must be that $a^2 - 4b \neq 2$, as desired.

The following two theorems are classic examples of proof by contradiction and are very important results for algebra and number theory.

Theorem 3. The number $\sqrt{2}$ is irrational.

Proof. Suppose, towards a contradiction, that $\sqrt{2}$ is a rational number. Then $\sqrt{2} = \frac{a}{b}$ for some integers a and b, where $\frac{a}{b}$ is fully reduced. Squaring both sides, we see that $2 = \frac{a^2}{b^2}$,

i.e.,

$$a^2 = 2b^2.$$

So a^2 is an even number. Note that the square of an odd number is odd:

$$(2n+1)^2 = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1,$$

i.e.,

$$4k^2 = 2b^2$$
.

 $(2k)^2 = 2b^2,$

Dividing by 2, we get

 $2k^2 = b^2.$

Thus b^2 is an even number and, by the same argument above, it follows that b is even. However, this means that a and b share a factor of 2, while $\frac{a}{b}$ was assumed to be fully reduced. This is a contradiction. Therefore, it must be that $\sqrt{2}$ is irrational.

Theorem 4. There are infinitely many prime numbers.

Proof. Suppose, towards a contradiction, that there are only finitely many primes, say $p_1, p_2, p_3, \ldots, p_n$. Consider the number $p_1p_2p_3 \cdots p_n+1$. For each prime number p_i , the number $p_1p_2p_3 \cdots p_n+1$ leaves a remainder of 1 when divided by p_i . Therefore, $p_1p_2p_3 \cdots p_n+1$ is not divisible by any of the prime numbers $p_1, p_2, p_3, \ldots, p_n$ and so it must be prime itself. However, $p_1, p_2, p_3, \ldots, p_n$ was assumed to be a complete list of primes, and we have reached a contradiction. Thus there are infinitely many prime numbers.

(5) Prove the following statement by proving its contrapositive.

Theorem 5. Let x and y be integers. If x + y is even, then x and y are both even or x and y are both odd.

Contrapositive: Let x and y be integers. If one x and y is even and one of x and y is odd, then x + y is odd.

Proof. Suppose that x is an even integer and y is an odd integer. Then x = 2k and y = 2n + 1 for some integers k and n. We have

$$x + y = 2k + 2n + 1 = 2(k + n) + 1,$$

which is odd, as desired. Since addition is commutative, the same follows for x odd and y even.

(6) Prove the following "if and only if" statement.

Theorem 6. Suppose that a, b, and c are elements of a group G and $c = c^{-1}$. Then, ab = c if and only if abc = e.

We assume the whole first sentence, and we need to prove the statement "If ab = c, then abc = e." and the statement "If abc = e, then ab = c."

Proof. Suppose that a, b, and c are elements of a group G and $c = c^{-1}$. \implies Assume that ab = c. Multiplying on each side by c, we get

$$abc = cc$$

= cc^{-1} (since $c = c^{-1}$)
= e .

 \leftarrow Assume that abc = e. Multiplying on each side by c^{-1} , we get

$$abcc^{-1} = c^{-1}$$
$$ab(cc^{-1}) = c \quad (\text{since } c = c^{-1})$$
$$ab = c.$$