Math 31: Topics in Algebra Summer 2019 - Problem Set 1

Due: Wednesday, July 3

Instructions: Write or type your answers neatly, and staple all pages before passing in your assignment. Use complete sentences where appropriate. Show your work; little credit will be given for solutions without work or justification.

#1 Which of the following rules are binary operations on the indicated sets? For each rule that *is* a binary operation, determine whether or not the set is a group under this operation. Justify your answers.

- a) $A = \mathbb{R} \setminus \mathbb{Q}, a * b = ab$ (ordinary multiplication).
- b) $Mat_2(\mathbb{R})^+ = \{2\text{-by-}2 \text{ matrices } A \text{ with entries in } \mathbb{R} \mid \det(A) > 0\}, A * B = AB \text{ (matrix multiplication)}.$

c)
$$\operatorname{Mat}_2(\mathbb{R})^{\operatorname{up}} = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \right\}, A * B = AB \text{ (matrix multiplication)}$$

d) $A = \{-4, -3, -1, 1, 2, 3, 4, 5\}, a * b = |b|.$

#2 In class, we defined the symmetric difference as a binary operation defined on $\mathcal{P}(U)$ for any set U by

$$A \triangle B = (A \smallsetminus B) \cup (B \smallsetminus A).$$

Prove that this binary operation is associative.

#3 (Abelian groups)

- a) Prove that if G is an abelian group, $a, b \in G$, then for all integers n, $(ab)^n = a^n b^n$.
- b) Prove that if G is a group and for all $a, b \in G$, $(ab)^2 = a^2b^2$, then G is abelian.
- c) Prove that G is a group in which every element is its own inverse, G is abelian.

#4 (Order of group elements)

a) Let G be a group and $g \in G$ with $\operatorname{ord}(g) = km$ for positive integers k and m. Prove that $\operatorname{ord}(g^k) = m$.

Math 31: Topics in Algebra Summer 2019 - Problem Set 1

Due: Wednesday, July 3

b) Let G be a group and let $g \in G$. An element $b \in G$ is called a *conjugate* of a if there exists an element $x \in G$ such that $b = xax^{-1}$. Show that if b is a conjugate of a and $\operatorname{ord}(a) = n$, then $\operatorname{ord}(b) = n$.

#5 (Subgroups)

- a) Let H be a subgroup of G and $x \in G$. Define $xHx^{-1} = \{xhx^{-1} : h \in H\}$. Prove that xHx^{-1} is also a subgroup of G.
- b) Let G be a group and define the *center* of G by $Z(G) = \{z \in G : gz = zg \text{ for all } g \in G\}$ (the subset of G that commutes with everything in G). Prove that Z(G) is a subgroup of G.
- c) What are all of the subgroups of \mathbb{Z}_{12} under addition modulo 12?