Math 31: Topics in Algebra
 Summer 2019 - Problem Set 1

Due: Wednesday, July 3
Instructions: Write or type your answers neatly, and staple all pages before passing in your assignment. Use complete sentences where appropriate. Show your work; little credit will be given for solutions without work or justification.
\#1 Which of the following rules are binary operations on the indicated sets? For each rule that is a binary operation, determine whether or not the set is a group under this operation. Justify your answers.
a) $A=\mathbb{R} \backslash \mathbb{Q}, a * b=a b$ (ordinary multiplication).
b) $\operatorname{Mat}_{2}(\mathbb{R})^{+}=\{2$-by- 2 matrices A with entries in $\mathbb{R} \mid \operatorname{det}(A)>0\}, A * B=A B$ (matrix multiplication).
c) $\operatorname{Mat}_{2}(\mathbb{R})^{\text {up }}=\left\{\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right): x \in \mathbb{R}\right\}, A * B=A B$ (matrix multiplication).
d) $A=\{-4,-3,-1,1,2,3,4,5\}, a * b=|b|$.
\#2 In class, we defined the symmetric difference as a binary operation defined on $\mathcal{P}(U)$ for any set U by

$$
A \triangle B=(A \backslash B) \cup(B \backslash A)
$$

Prove that this binary operation is associative.
\#3 (Abelian groups)
a) Prove that if G is an abelian group, $a, b \in G$, then for all integers $n,(a b)^{n}=a^{n} b^{n}$.
b) Prove that if G is a group and for all $a, b \in G,(a b)^{2}=a^{2} b^{2}$, then G is abelian.
c) Prove that G is a group in which every element is its own inverse, G is abelian.
\#4 (Order of group elements)
a) Let G be a group and $g \in G$ with $\operatorname{ord}(g)=k m$ for positive integers k and m. Prove that $\operatorname{ord}\left(g^{k}\right)=m$.

Math 31: Topics in Algebra
 Summer 2019 - Problem Set 1

Due: Wednesday, July 3
b) Let G be a group and let $g \in G$. An element $b \in G$ is called a conjugate of a if there exists an element $x \in G$ such that $b=x a x^{-1}$. Show that if b is a conjugate of a and $\operatorname{ord}(a)=n$, then $\operatorname{ord}(b)=n$.

\#5 (Subgroups)

a) Let H be a subgroup of G and $x \in G$. Define $x H x^{-1}=\left\{x h x^{-1}: h \in H\right\}$. Prove that $x H x^{-1}$ is also a subgroup of G.
b) Let G be a group and define the center of G by $Z(G)=\{z \in G: g z=z g$ for all $g \in G\}$ (the subset of G that commutes with everything in G). Prove that $Z(G)$ is a subgroup of G.
c) What are all of the subgroups of \mathbb{Z}_{12} under addition modulo 12 ?

