Math 31: Topics in Algebra
 Summer 2019 - Problem Set 2

Due: Wednesday, July 10
Instructions: Write or type your answers neatly, and staple all pages before passing in your assignment. Use complete sentences where appropriate. Show your work; little credit will be given for solutions without work or justification.
\#1.
a) Write $\sigma=\left(\begin{array}{lllllll}1 \\ 2 & 4 & 4 & 4 & 5 & 6 & 7 \\ \hline\end{array}\right.$
b) Write $\tau=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 6 & 6 & 7 \\ 7 & 8 & 8 & 5 & 1 & 4 & 9\end{array}\right)$ in cycle notation.
c) Compute $\sigma^{-1} \tau$. Write your answer in both cycle notation and two-line notation.
d) Write τ as a product of transpositions.
\#2 Let $\sigma \in S_{n}$ be a permutation written in cycle notation as $C_{1} \cdot C_{2} \cdots C_{k}$, where each C_{i} is a cycle of length m_{i} and these cycles are disjoint. What is ord (σ) ? Prove your answer.

\#3 (Generators for S_{n})

a) Prove that any permutation in S_{n} can be written as a product of adjacent transpositions: transpositions of the form $(i \quad i+1)$ for $i \in\{1,2, \ldots, n-1\}$. (Hint: we already know that σ can be written as a product of transpositions.)
b) Prove that if $\sigma \in S_{n}$ is a k-cycle $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{k}\right)$ and $\pi \in S_{n}$, then $\pi \sigma \pi^{-1}$ is also a k-cycle. (Hint: first prove it's true if π is a cycle.)
c) Use a) and b) to prove that any permutation in S_{n} can be written as a product of the two permutations ($12 \cdots n$) and (12) (and their inverses).

\#4 (Homomorphisms)

a) Let $f: G \rightarrow H$ be a group homomorphism. Show that as a function from G to H, f is injective if and only if $\operatorname{Ker}(f)=\left\{e_{G}\right\}$.
b) Let G be a group and denote by $\operatorname{Aut}(G)$ the set of isomorphisms from G to itself. Show that $\operatorname{Aut}(G)$ is a group under function composition.

Math 31: Topics in Algebra

Summer 2019 - Problem Set 2
Due: Wednesday, July 10

\#5

a) Show that $\mathbb{Z} \cong E$ where E is the group of even integers under addition.
b) Let P_{2} be the group of subsets of $\{a, b\}$ under the symmetric difference operation. Prove $P_{2} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

