Math 31: Topics in Algebra
 Summer 2019 - Problem Set 5

Due: Wednesday, July 31
Instructions: Write or type your answers neatly, and staple all pages before passing in your assignment. Use complete sentences where appropriate. Show your work; little credit will be given for solutions without work or justification.
$\# \mathbf{1}$ Let A be any nonempty set and let $\mathcal{P}(A)$ be its power set.
a) Prove that $\mathcal{P}(A)$ is a ring, with addition defined by symmetric difference and multiplication defined by intersection. Is it commutative ring?
b) Find all zero divisors of $\mathcal{P}(A)$. Is it an integral domain?
c) Find all units of $\mathcal{P}(A)$. Is it a field?
\#2 (Properies of Rings)
a) Prove that the only ideals of a field F are F and $\{0\}$.
b) Prove that every field is an integral domain.
c) Let A be a ring. An element $x \in A$ is idempotent if $x^{2}=x$. Prove that if every element is idempotent, then A is commutative.
\#3 (Ideals and Subrings)
a) Let A be a commutative ring with 1 and J an ideal of A. Define $\operatorname{Rad}(J)=\left\{x \in A: x^{n} \in\right.$ J for some $\left.n \in \mathbb{Z}^{+}\right\}$. Prove $\operatorname{Rad}(J)$ is an ideal of A.
b) Let A be a ring and $f: A \rightarrow A$ a ring homomorphism. Define $\operatorname{Fix}(f)=\{x \in A: f(x)=x\}$. Prove $\operatorname{Fix}(f)$ is a subring of A.
c) Let A be a ring and $f: A \rightarrow B$ a homomorphism. Prove that if A is an integral domain, then $f\left(1_{A}\right)=1_{B}$ or $f\left(1_{A}\right)=0_{B}$. Prove also that if $f(1)=1$, then the image of every unit in A is a unit in B, and if $f(1)=0$, then $f(x)=0$ for all $x \in A$.
\#4 (Quotient Rings) Let A be a commutative ring with unity, and let J be an ideal of A.
a) Prove that A / J has unity if and only if there exists an element $a \in A$ such that $a x-x \in J$ and $x a-x \in J$ for every $x \in A$.
b) Prove that J is a prime ideal if and only if A / J is an integral domain.

