Math 31: Topics in Algebra
 Summer 2019 - Problem Set 6

Due: Wednesday, August 7
Instructions: Write or type your answers neatly, and staple all pages before passing in your assignment. Use complete sentences where appropriate. Show your work; little credit will be given for solutions without work or justification.
\#1 Let A be a principal ideal domain: an integral domain in which every ideal is principal (eg. we proved that \mathbb{Z} is a PID using the division algorithm). Let $J=\langle x\rangle$ be a prime ideal of A. Show that J is maximal (if $J \subseteq I$ for some ideal I, then $I \in\{J, A\}$).

\#2

a) Let A be a finite commutative ring with unity. Prove that every nonzero element is either a unit or a zero divisor.
b) Let A be a finite integral domain. Show that if there exist some nonzero $x, y \in A$ such that $(x+y)^{2}=x^{2}+y^{2}$, then $\operatorname{char}(A)=2$.

\#3

a) Prove that for all nonzero integers a and $b, \operatorname{gcd}(a, b)=\operatorname{gcd}(a, b+a x)$ for all $x \in \mathbb{Z}$.
b) Recall that for two ideals I and J in a ring $A, I+J=\{x+y: x \in I, y \in J\}$ is also an ideal of A. Prove that for nonzero integers a and b wth $\operatorname{gcd}(a, b)=d,\langle a\rangle+\langle b\rangle=\langle d\rangle$.

\#4

a) Prove that if $a^{2} \equiv 1(\bmod 2)$ then $a^{2} \equiv 1(\bmod 4)$.
b) Let p and q be distinct primes. Prove $p^{q-1}+q^{p-1} \equiv 1(\bmod p q)$.

