Math 31: Topics in Algebra Summer 2019 - Problem Set 7

Due: Wednesday, August 14
Instructions: Write or type your answers neatly, and staple all pages before passing in your assignment. Use complete sentences where appropriate. Show your work; little credit will be given for solutions without work or justification.
\#1 How many polynomials of degree exactly n are there over \mathbb{Z}_{p}, where p is prime and n is a non-negative integer?
\#2 (Polynomial Division)
a) Find the quotient $q(X)$ and remainder $r(X)$ when $a(X)=X^{3}+X^{2}+X+1$ is divided by $b(X)=X^{2}+3 X+2$ in $\mathbb{Q}[X]$ and $\mathbb{Z}_{5}[X]$. Verify your answers by confirming that $a(X)=$ $b(X) q(X)+r(X)$.
b) Find the quotient $q(X)$ and remainder $r(X)$ when $a(X)=X^{3}+2$ is divided by $b(X)=$ $2 X^{2}+3 X+4$ in $\mathbb{Q}[X]$, in $\mathbb{Z}_{3}[X]$, and $\mathbb{Z}_{5}[X]$. Verify your answers by confirming that $a(X)=$ $b(X) q(X)+r(X)$.

\#3 (Polynomials over a Ring with Zero Divisors)

a) Find all ways to factor X^{2} into a product of two degree one polynomials over \mathbb{Z}_{9} and over \mathbb{Z}_{7}. Why are these answers different?
b) Show that in $\mathbb{Z}_{8}[X]$, there are infinitely many square roots of 1 .
\#4 (Polynomials over a Field)
Let F be a field and let J be an ideal of $F[X]$. Recall that $F[X]$ is a principal ideal domain: all ideals are principal.
a) Prove that any two generators of J are associates, and so J has a unique monic generator.
b) Prove that J is a prime ideal if and only if it has an irreducible generator.

Summer 2019 - Problem Set 7
Due: Wednesday, August 14
a) Factor the following polynomials into irreducibles over \mathbb{Z}_{5} :

- $X^{3}+X^{2}+X+1$
- $X^{5}+1$
- $X^{4}+1$
- $X^{4}+4$
b) Show that the following polynomials are irreducible over \mathbb{Q} :
- $3 X^{4}-8 X^{3}+6 X^{2}-4 X+6$
- $\frac{2}{3} X^{5}+\frac{1}{2} X^{4}-2 X^{2}+\frac{1}{2}$
- $\frac{1}{5} X^{4}-\frac{1}{3} X^{3}-\frac{2}{3} X+1$

