Math 31: Topics in Algebra
 Summer 2019 - Problem Set 8

Due: Wednesday, August 21
Instructions: Write or type your answers neatly, and staple all pages before passing in your assignment. Use complete sentences where appropriate. Show your work; little credit will be given for solutions without work or justification.
\#1 Use Eisenstein's criterion with the appropriate change of variable to show that each of the following polynomials is irreducible over \mathbb{Q} :
a) $X^{4}+2 X^{2}-1$
b) $X^{3}-3 X+1$
$\# \mathbf{2}$ Use the natural homomorphism $\bar{h}_{n}: \mathbb{Z}[X] \rightarrow \mathbb{Z}_{n}[X]$ to show that the polynomial $X^{4}+7 X^{3}+$ $14 X^{2}+3$ has no roots in \mathbb{Q} (find the correct $n!$). How else might you show there are no rational roots of this polynomial?

\#3

a) Show that $2+3 i$ is algebraic over \mathbb{Q} by finding its minimal polynomial $p(X)$. How do you know $p(X)$ is irreducible?
b) Find a monic irreducible polynomial $p(X)$ over \mathbb{Q} such that $\mathbb{Q}[X] /\langle p(X)\rangle \cong \mathbb{Q}(1+\sqrt{2})$.
c) Find a complex number a such that $p(X)=X^{4}+2 X^{2}-1$ is the minimal polynomial of a over \mathbb{Q}.
\#4 Write down the 8 elements of $\mathbb{Z}_{2}[X] /\left\langle X^{3}+X+1\right\rangle$. Write down its multiplication table and confirm every element (except 0) has an inverse.

\#5

a) Prove that $\left\{[a, b, c]^{t}: 2 a-3 b+c=0\right\}$ is a subspace of \mathbb{R}^{3}. Find its dimension and a basis for it as a subspace.
b) Prove that if V is a vector space over F with basis $\left\{\overrightarrow{a_{1}}, \overrightarrow{a_{2}}, \ldots, \overrightarrow{a_{n}}\right\}$, then for any nonzero scalars $k_{1}, k_{2}, \ldots, k_{n} \in F,\left\{k_{1} \overrightarrow{a_{1}}, k_{2} \overrightarrow{a_{2}}, \ldots, k_{n} \overrightarrow{a_{n}}\right\}$ is also a basis for V.
c) Let U and V be vector spaces over F and $h: U \rightarrow V$ a linear transformation. Prove that $\operatorname{Ker}(h)$ is a subspace of U (the null space) and $h(U)$ is a subspace of V (the range space).

