Math 31 - Proofs Practice

The following problems are for proof-writing practice and will not be submitted for grade.

Miscellaneous:

1. Find a closed formula for the sum of the first n odd numbers

$$
\sum_{i=1}^{n}(2 i-1)
$$

Prove it by induction.
2. Let $x \in \mathbb{Q}$ and $y \in \mathbb{R} \backslash \mathbb{Q}$. Prove by contradiction that $x+y \notin \mathbb{Q}$ (the sum of a rational number and an irrational number is irrational. What does it mean for a number to be rational?)
3. For integers a and $b, a \neq 0$, we say that a divides b, written $a \mid b$, if there exists some integer d such that $b=a d$ (ie. b is divisible by a). Let $a, b \in \mathbb{Z}_{\neq 0}$ be such that a divides b and b divides a. Prove that $b \in\{a,-a\}$.

Functions and Set Theory:

1. A function $f: A \rightarrow B$ is injective if for all $x, y \in A$, if $f(x)=f(y)$, then $x=y$ (no two elements are mapped to the same place under f. A function $f: A \rightarrow B$ is surjective if for all $y \in B$, there is some $x \in A$ such that $f(x)=y$ (every element in B is "hit" by something in A.

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$. Is f injective? Is it surjective? Prove your answer.
2. Let A and B be two sets. Prove (by considering set elements) that $A \cup B=A$ if and only if $B \subseteq A$. (Whenever you see if and only if, it means there are two things to prove!)
3. (De Morgan's Law) Let $X, Y \subset U$. Show that $(X \cup Y)^{c}=X^{c} \cap Y^{c}$. Here, X^{c} denotes the set complement $U \backslash X$. (What does it mean for two sets to be equal?)

Linear Algebra:

1. Prove (using associativity of multiplication) that if A is an invertible matrix, its inverse is unique.
2. Prove that if $S, T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are linear functions, then $S \circ T$ is a linear function. (Recall that T is linear if for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}, T(c \mathbf{v})=c T(\mathbf{v})$ and $T(\mathbf{v}+\mathbf{w})=$ $T(\mathbf{v})+T(\mathbf{w})$.
3. Prove by induction that if \mathbf{v} is an eigenvector for a square matrix A with eigenvalue λ, then for all positive integers n, \mathbf{v} is an also eigenvector for A^{n} with eigenvalue λ^{n}.
