Homework Assignment 1

Due Wednesday April 4

- 1. Show that the (short) distance from a point to a straight line in \mathbb{R}^2 is the length of the perpendicular. Use vector notation.
- 2. Show that $||(x, y)|| = \sqrt[3]{x^3 + y^3}$ is a norm on \mathbb{R}^2 , Does it comes from inner product?
- 3. Derive the following identities

• $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$ • $\|\mathbf{u} + \mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2 = 4(\mathbf{u}, \mathbf{v})$

- 4. If $(\mathbf{u}, \mathbf{v}) = 0$ and $(\mathbf{v}, \mathbf{w}) = 0$ does that imply that $(\mathbf{u}, \mathbf{w}) = 0$?
- 5. Does the choice $\|\mathbf{u}\| = \max_{1 \le i \le n} |u_i|$, for \mathbb{R}^n is a norm?
 - Does the choice $\|\mathbf{u}\| = \min_{1 \le i \le n} |u_i|$, for \mathbb{R}^n is a norm?