Homework Assignment 1

Due Wednesday April 4

1. Show that the (short) distance from a point to a straight line in \mathbb{R}^{2} is the length of the perpendicular. Use vector notation.
2. Show that $\|(x, y)\|=\sqrt[3]{x^{3}+y^{3}}$ is a norm on \mathbb{R}^{2}, Does it comes from inner product?
3. Derive the following identities

$$
\begin{gathered}
\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\|\mathbf{u}\|^{2}+2\|\mathbf{v}\|^{2} \\
\|\mathbf{u}+\mathbf{v}\|^{2}-\|\mathbf{u}-\mathbf{v}\|^{2}=4(\mathbf{u}, \mathbf{v})
\end{gathered}
$$

4. If $(\mathbf{u}, \mathbf{v})=0$ and $(\mathbf{v}, \mathbf{w})=0$ does that imply that $(\mathbf{u}, \mathbf{w})=0$?
5. - Does the choice $\|\mathbf{u}\|=\max _{1 \leq i \leq n}\left|u_{i}\right|$, for \mathbb{R}^{n} is a norm?

- Does the choice $\|\mathbf{u}\|=\min _{1 \leq i \leq n}\left|u_{i}\right|$, for \mathbb{R}^{n} is a norm?

