Homework Assignment 3

Due Monday April 16

1. Lets $S_n(t) = \sum_{k=0}^n c_k(f)e^{i\pi kt}$, where c_k is the complex Fourier coefficient.

prove that

$$S_n(t) = \int_{-\pi}^{\pi} D_n(t-u) f(u) du$$

Where

$$D_n(x) = \frac{\sin(\frac{(2n+1)x}{2})}{2\sin(\frac{x}{2})}$$

2. Find the Fourier series of the function $f(x) = \cos(px)$ where p is not an integer, and show that:

$$\pi \cot(p\pi) = \frac{1}{p} + 2\sum_{n=1}^{\infty} \frac{p}{p^2 - n^2}$$

$$\frac{\pi}{\sin(p\pi)} = \frac{1}{p} + 2\sum_{n=1}^{\infty} \frac{(-1)^n p}{p^2 - n^2}$$

3. Show that

$$c_n(fg) = \sum_{n=-\infty}^{\infty} c_{p-n}(f)c_p(g)$$

4. The Fourier series of $f(x) = \frac{\sin(x)}{x}$, $-\pi \le x \le \pi$ converge at every point (why?) to what value the series converge at x = 0 and at $x = \pi$?