course information


 

    Mathematics 33                Spring 2003           Syllabus
 

 Date             Topics                                                                                 Homework
 
3-26 Review PDEs  Problem 1, solving the heat equation.
3-28 More review,  Start Gibbs' phenomenon  Problems 2,3(a), Gibbs' phenomenon for a step function.


3-31
 Gibbs' phenomenon
 Problems 3b,c,d
4-2
Start exponential form of Fourier series
Problem 4
4-4
Continue
Problem 5  


4-7
Fourier transform                            
  Problems 6,7
4-9
Some properties of the Fourier Transform
Problem 8   and p. 61 of our text (Baker reserve), problem 1.1 (a) and (b) only.
4-11
Transforming PDEs
p. 72: 1.20 and Problem 9


4-14
Convolutions                                         
p. 116: 2.1(c), and p. 117: 2.4a,b,c  and  Problem 10   (optional: p. 122: 2.28)
4-16
properties of the Fourier Transform
Problem 11  and p. 156:  3.2e,j;  p. 157:  3.5d,e,f,h.  (You will need the Fourier transform of the gaussian for many of these.  See problem 11 for it.)  Also do Problem 12, but don't turn it in.
4-18
Inhomogenous heat  equation
Problem 5

    The exam on Wednesday,  April  23, in Bradley 105, from 7:00 to 9:00pm covers up to here.

4-21
More properties
Due Friday: Problem 13 and p. 156: 3.2(f);  p. 158:  3.11 (Use p. A-3 to find the known 
Fourier transforms of the functions d and f.);  p. 161: 3.20a,b,c,d,e,f,  p. 122: 2.26(a) 
4-23
Start distributions
Due Friday or Monday: p. 157: 3.4(f) and 3.6(a)         
4-25
Differentiating distributions
Problems 14,15,16    

      

4-28
Schwartz functions
  Problem 17  and optional (due 5-5)Problem 18
4-30
Product rule
Problems 20, 21(a)
5-2
Fourier transforms
Problems 22, 23


5-5
Start convolutions of distributions
 
5-7
Convolutions
Problems 24, 25,26
5-9
Solving linear ODEs
Problem 27

   

5-12
Schrodinger equation
Problems 28, 29  (29 due Wed., 28 on Friday)
5-14
review

5-16
Derivation of heat equation
Problems 30, 31

   

5-19
Laplace's equation
Problem 32  (due Friday, the 23rd)
5-21

just problem 32
5-23
The wave equation
Problem 33

 
5-28
Wave equation
none                                      


    The final exam will cover the entire course, but will emphasize material covered since the second exam.