6. Assume that $g: \mathbf{R} \rightarrow \mathbf{R}$ is an odd function, or a function defined only for $x \geq 0$. Use the Fourier transform pair

$$
f(x)=\int_{-\infty}^{\infty} F(s) e^{2 \pi i s x} d s
$$

where

$$
F(s)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i s x} d x
$$

to derive the Fourier sine transform pair

$$
g(x)=2 \int_{0}^{\infty} G(s) \sin (2 \pi s x) d s
$$

where

$$
G(s)=2 \int_{0}^{\infty} g(x) \sin (2 \pi s x) d x
$$

7. Find the Fourier sine transform $\mathcal{F}_{\text {sin }}(g)(s)=G(s)$ where

$$
g(x)=e^{-x}, \quad x>0
$$

To save you from another integration by parts, you may use

$$
\int e^{-x} \sin c x d x=\frac{-e^{-x}}{1+c^{2}}(c \cos c x+\sin c x) .
$$

answer: $\mathcal{F}_{\sin }\left(e^{-x}\right)(\omega)=\frac{2 \pi s}{1+(2 \pi s)^{2}}$
8. Solve the following heat conduction problem for a semi-infinite rod.

$$
\begin{gathered}
4 u_{x x}=u_{t}, \quad x>0, \quad t>0 \\
u(0, t)=0, \quad t \geq 0 \\
u(x, 0)=e^{-x}, \quad x>0
\end{gathered}
$$

Your answer may contain an integral.
9. Find the Fourier transform $U(s, t)$ of the solution to the inhomogenous heat equation

$$
\alpha^{2} u_{x x}+f(x, t)=u_{t}, \quad-\infty<x<\infty, \quad t>0
$$

which satisfies the initial condition

$$
u(x, 0)=0, \quad-\infty<x<\infty
$$

Then write an expression for the solution $u(x, t)$ itself. You will need to remember (from Math 8 or Math 23) how to solve a first order linear ODE.
10.
(a) Use Parseval's identity to evaluate the integral

$$
\int_{-\infty}^{\infty}\left(\frac{\sin \pi s}{\pi s}\right)^{2} d s
$$

(b) Use the inverse Fourier transform (evaluated at 0) to compute

$$
\int_{-\infty}^{\infty} \frac{\sin \pi s}{\pi s} d s
$$

(c) Then change variables and use symmetry to show that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

(This definite integral came up in our discussion of the Gibbs' Phenomenon.)

