In these problems, you will need to use

$$
\mathcal{F}\left(e^{-a x^{2}}\right)(s)=\sqrt{\frac{\pi}{a}} e^{-\frac{\pi^{2}}{a} s^{2}}=\mathcal{F}^{-1}\left(e^{-a x^{2}}\right)(s)
$$

We derived most of this in class and will finish on Friday.
11. Compute

$$
e^{-a x^{2}} * e^{-b x^{2}}
$$

where a and b are positive constants. Use the Fourier transform and its inverse. answer:

$$
\sqrt{\frac{\pi}{a+b}} e^{-\frac{a b}{a+b} x^{2}}
$$

12. In class we derived the solution $u(x, t)$ given in exercise $1.20, \mathrm{p} .72$, to the heat conduction problem for an infinite rod with initial temperature function $f=\mathcal{F}^{-1} A$. Now write the solution $u(x, t)$ as a convolution of f with a gaussian function. Briefly say how the gaussian changes with time.
answer: From class,

$$
U(s, t)=F(s) \cdot e^{-(2 \pi s \alpha)^{2} t}
$$

So

$$
u(x, t)=\mathcal{F}_{x}^{-1}(U(s, t))=f * \mathcal{F}_{x}^{-1}\left(e^{-(2 \pi s \alpha)^{2} t}\right)(x)=f * K_{t}(x)
$$

where

$$
K_{t}(x)=\frac{1}{\sqrt{4 \pi \alpha^{2} t}} e^{-x^{2} / 4 \alpha^{2} t}
$$

The function K_{t} is a gaussian which spreads out with time.
Solution to problem 5 of last year's test:
$U(s, t)=F(s) \cdot e^{-\left(1+(2 \pi \alpha s)^{2}\right) t}$ and $u(x, t)=e^{-t}\left(f * K_{t}(x)\right)$, where $K_{t}(x)=\frac{e^{-x^{2} / 4 \alpha^{2} t}}{\sqrt{4 \pi \alpha^{2} t}}$ as in problem 12.
13. We have seen that the solution to the usual heat conduction problem

$$
\begin{gathered}
\alpha^{2} u_{x x}=u_{t}, \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0)=f(x), \quad-\infty<x<\infty
\end{gathered}
$$

is $u(x, t)=f * K_{t}(x)$, with K_{t} as in problem 12.
(a) Show that if $t_{0}>0$ then the function $h(x)=u\left(x, t_{0}\right)$ has derivitives of all orders, even if f is not differentiable or even continuous. (Compare this with problem 4, assigned on 4-2.)
(b) By working with the solution $u(x, t)$ written as a convolution, check that it really does satisfy the PDE.
14. Show that the function T defined on test functions by $T(\varphi)=3 \varphi^{\prime \prime}(2)$ or $\langle T, \varphi\rangle=$ $3 \varphi^{\prime \prime}(2)$ is linear and so defines a distribution.
15. Does the formula $\langle T, \varphi\rangle=(\varphi(0))^{2}$ define a distribution. Why or why not?
16. Find, in the distribution sense, the first three derivatives of the function $f(x)=|x|$.
17. Which of these functions is rapidly decreasing? Which is a Schwartz function? Explain briefly.
(a) $\operatorname{sinc} x$
(b) $e^{-x^{2}} \sin x$
(c) $e^{-x^{2}} \sin \left(e^{x^{2}}\right)$
(d) $e^{-2 x^{2}} \sin \left(e^{x^{2}}\right)$
18. (optional) In class we saw that the solution to the inhomogenous heat equation with homogeneous initial conditions

$$
\begin{gathered}
\alpha^{2} u_{x x}+f(x, t)=u_{t}, \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0)=0, \quad-\infty<x<\infty
\end{gathered}
$$

can be written as

$$
u(x, t)=\int_{0}^{t} K_{t-w} * f(\cdot, w)(x) d w
$$

where K_{t} is the usual heat kernel as in problem 12. The term $f(x, t)$ in the PDE may be interpreted as the rate (per unit time per unit length) at which heat is added to the wire at time t and position x. With this interpretation, what is the total amount of heat $\int_{-\infty}^{\infty} u\left(x, t_{0}\right) d x$ in the wire at time t_{0} in terms of f ? Check that this agrees with the value of $\int_{-\infty}^{\infty} u\left(x, t_{0}\right) d x$ if this integral is done using $u(x, t)$ as written above.

In the next two problems, $H(x)$ is the heaviside function.
20. Express these distributions in as simple a form as possible.
(a) $(H(x) \cos x)^{\prime}$
(b) $(\delta \sin 2 x)^{\prime}$
(c) $\delta^{\prime} \sin 2 x$
(d) $x^{2} \delta^{\prime}$
(e) $x^{n} \delta^{(n)}$
21.
(a) Find a distribution $F=f \cdot H$, where f is a twice continuously differentiable function which satisfies, in the distribution sense, the differential equation

$$
F^{\prime \prime}+4 F=\delta
$$

(b) Do the same for the equation

$$
F^{\prime \prime}-4 F=2 \delta-\delta^{\prime}
$$

