Math 35: Real analysis Winter 2018 - Homework 1

Total: 20 points

Return date: Wednesday 01/10/18

Chapter 1.1

keywords: rational and irrational numbers.

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.

exercise 2. (2 points) Prove that there is a rational number between any two distinct rational numbers.

Solution: For $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$, where $\frac{a}{b} < \frac{c}{d}$ we take the mean value $\frac{1}{2} \cdot \left(\frac{a}{b} + \frac{c}{d}\right) \in \mathbb{Q}$. Then

$$\frac{a}{b} = \frac{1}{2} \left(\frac{a}{b} + \frac{a}{b} \right) < \frac{1}{2} \left(\frac{a}{b} + \frac{c}{d} \right) < \frac{1}{2} \left(\frac{c}{d} + \frac{c}{d} \right) = \frac{c}{d}.$$

exercise 3. (2 points) Convert each rational number into decimal numbers. **Solution:** a) $\frac{8}{27} = 0.\overline{296}$ b) $\frac{4}{21} = 0.\overline{190476}$ c) $\frac{5}{19} = 0.\overline{263157894736842105}$.

exercise 5. (2 points) Find the millionth digit in the decimal expansion of $\frac{2}{7}$. Solution: We have that $\frac{2}{7} = 0.\overline{285714}$. We have $1000000 = 166666 \cdot 6 + 4$. So the millionth digit is 7.

exercise 7. (3 points) Prove that the sum of a rational and an irrational number is irrational. Solution: We have to show that if $p \in \mathbb{Q}$ and $x \in \mathbb{R} \setminus \mathbb{Q}$ then $x + q = r \in \mathbb{R} \setminus \mathbb{Q}$. We prove this fact by contradiction: Suppose that $r \in \mathbb{Q}$, then $r - q \in \mathbb{Q}$, hence

$$x = r - q \in \mathbb{Q},$$

which is a contradiction.

exercise 8. (3 points) Prove that the product of a non-zero rational number and an irrational number is irrational.

Solution: We have to show that if $p \in \mathbb{Q}$ and $x \in \mathbb{R} \setminus \mathbb{Q}$ then $x \cdot q = r \in \mathbb{R} \setminus \mathbb{Q}$. We prove this fact by contradiction: Suppose that $r \in \mathbb{Q}$, then $r \cdot \frac{1}{q} \in \mathbb{Q}$, hence

$$x = r \cdot \frac{1}{q} \in \mathbb{Q}$$

which is a contradiction.

Math 35: Real analysis Winter 2018 - Homework 1

Total: 20 points

Return date: Wednesday 01/10/18

exercise 11. (4 points) Let n be a positive integer that is not a perfect square. Prove that \sqrt{n} is irrational.

Solution: The proof uses similar ideas as the proof for the case n = 2: We know that n is a positive integer that is not a perfect square. Suppose that

$$\sqrt{n} = \frac{a}{b} \in \mathbb{Q}, \text{ where } a, b \in \mathbb{Z}$$

and $\frac{a}{b}$ is a reduced fraction. We know that n can be factored into primes and at least one of those primes, say p|n occurs oddly many times, as otherwise n would be a perfect square. We also know that

$$n = \frac{a^2}{b^2} \quad \text{or} \quad n \cdot b^2 = a^2.$$

But then p shows up oddly many times as a factor on the left hand side, but evenly many times on the right hand side. A contradiction.

exercise 13. (4 points) Prove that $r = \sqrt{n-1} + \sqrt{n+1}$ is irrational for every positive integer n.

Solution: For n = 1 we know from the lecture that $r = \sqrt{1-1} + \sqrt{1+1} = \sqrt{2}$ is irrational. For $n \ge 2$ we argue by contradiction: Suppose that $\sqrt{n-1} + \sqrt{n+1} \in \mathbb{Q}$. Then

$$r^{2} = (\sqrt{n-1} + \sqrt{n+1}) \cdot (\sqrt{n-1} + \sqrt{n+1}) \in \mathbb{Q}.$$

But then

$$r^{2} = (n-1) + (n+1) + 2\sqrt{(n+1)(n-1)} = 2n + \sqrt{n^{2} - 1} \in \mathbb{Q}.$$

By exercise 7. we know that

$$2n+\sqrt{n^2-1}\in \mathbb{Q} \Leftrightarrow \sqrt{n^2-1}\in \mathbb{Q}\,.$$

By exercise 11. $\sqrt{n^2 - 1} \in \mathbb{Q}$ if and only if $n^2 - 1$ is a perfect square.

However, we know that for all $n \ge 2$: $n^2 - 1$ is not a perfect square, as the difference between two perfect squares is at least $3 = 2^2 - 1^2$.

Hence $r^2 = 2n + \sqrt{n^2 - 1} \notin \mathbb{Q}$ and our assumption that $r = \sqrt{n - 1} + \sqrt{n + 1} \in \mathbb{Q}$ must be wrong. Hence $r \in \mathbb{R} \setminus \mathbb{Q}$ for every positive integer n.