Total: 20 points

Return date: Wednesday 01/17/18

Chapter 1.2

keywords: absolute value, inequalities, geometric sum.

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.

exercise 4. (5 points) Prove Theorem 1.4 Solution: We recall:

Theorem 1.4 The absolute value of a function has the following properties: for all $a, b, c \in \mathbb{R}$

- a) $-|a| \le 0 \le |a|$.
- b) $|a| \cdot |b| = |a \cdot b|$.
- c) |-a| = |a|.
- d) Let c > 0. Then $|a| < c \Leftrightarrow -c < a < c$ and $|a| \le c \Leftrightarrow -c \le a \le c$.

proof of a) Recall that

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0 \end{cases}$$

By **Def. 1.3.3.** we have:

 $a < 0 \Leftrightarrow 0 - a > 0 \Leftrightarrow -a > 0$ and $-a < 0 \Leftrightarrow 0 - (-a) > 0 \Leftrightarrow a > 0.(**)$

For our proof we distinguish three cases:

- i.) a = 0: We recall that $a = 0 \Leftrightarrow |a| = 0$. By the definition of |a| we have -|0| = 0 = |0| and our statement is true.
- ii.) a < 0: By the definition of |a| we have |a| = -a, hence -|a| = -(-a) = a and we have $-|a| = a \Rightarrow -|a| \le a$. Furthermore a < 0 and 0 < |a|. Hence by **Def. 1.2.2** a < |a|, hence $a \le |a|$.
- iii.) a > 0: By the definition of |a| we have |a| = a, hence we also have $|a| \le a$. Furthermore we know that $a = |a| > 0 \Leftrightarrow 0 < -|a|$. Hence by **Def. 1.2.2** -|a| < a, hence $-|a| \le a$.

As by **Def. 1.2.1** these are all possible cases, the inequality $-|a| \le a \le |a|$ is always true.

Total: 20 points

Return date: Wednesday 01/17/18

proof of b) Show that $|a \cdot b| = |a| \cdot |b|$. The case where a = 0 or b = 0 is trivial. We look at all remaining possible cases for the sign of a and b. We summarize the results in two tables:

$ a \cdot b $	a > 0	a < 0		$ a \cdot b $	a > 0	a < 0
b > 0	$a \cdot b$	$(-a) \cdot b = -(a \cdot b)$		b > 0	$a \cdot b$	$-(a \cdot b)$
b < 0	$a \cdot (-b) = -(a \cdot b)$	$(-a) \cdot (-b) = a \cdot b$]	b < 0	$-(a \cdot b)$	$a \cdot b$

For the second table we have to gather some information about the sign of $a \cdot b$:

- i.) b > 0 and a > 0: by **Def. 1.3.2** we have that $a \cdot b > 0$.
- ii.) b > 0 and a < 0: by (**) we have that -a > 0 and hence $(-a) \cdot b = -(a \cdot b) > 0$ by **Def. 1.3.2**. But again by (**) this implies that $-(-(a \cdot b)) = a \cdot b < 0$.
- iii.) b < 0 and a > 0: the same arguments imply that $a \cdot b < 0$.
- iv.) b < 0 and a < 0: again by $(^{**}) a > 0$ and -b > 0. Hence by **Def. 1.3.2** $(-a) \cdot (-b) = a \cdot b > 0$.

In total we get from the definition of |x| that $|a| \cdot |b| = |a \cdot b|$.

proof of c) By b) and the definition of a field we have that

$$|a| = |-1| \cdot |a| = |(-1) \cdot a| = |-a|.$$

proof of d) We only prove the first inequality. The second follows in a similar fashion. " \Rightarrow " We know that c > 0 and |a| < c.

- i.) a > 0: then |a| = a and 0 < a < c. By (**) we have that -c < 0, hence by **Def. 1.2.2** -c < a. In total we have that -c < a < c.
- ii.) a < 0: As c > 0, then by **Def. 1.2.2** we have that a < c. We also know that |a| = -a < c or c a > 0 By (**) this implies that a c < 0 or -c < a. In total -c < a < c.

" \Leftarrow " If a > 0 then |a| = a and as a < c there is nothing to prove. If a < 0 then |a| = -a. As $-c < a \Leftrightarrow 0 < a - c$ by **Def. 1.3.3**. Then by (**) we have that c - a < 0 or -a = |a| < c.

Total: 20 points

Return date: Wednesday 01/17/18

exercise 5. (3 points) Under which conditions does equality hold for the triangle and reverse triangle inequality:

Solution:

i.) Triangle inequality: We have |a + b| = |a| + |b|. To answer this question we can use that $|x| = \sqrt{x^2}$:

$$|a+b| = \sqrt{(a+b)^2} = \sqrt{a^2} + \sqrt{b^2} = |a| + |b|$$

As both sides are positive numbers, we can take the square on both sides and get

$$\sqrt{(a+b)^2} = \sqrt{a^2} + \sqrt{b^2} \Leftrightarrow (a+b)^2 = (|a|+|b|)^2 \Leftrightarrow a^2 + b^2 + 2ab = a^2 + b^2 + 2|a| \cdot |b| \Leftrightarrow a \cdot b = |a| \cdot |b|$$

Hence we have equality if $a \cdot b = |a| \cdot |b|$ or a and b have the same sign. It is easy to check that this condition implies that the triangle inequality is true.

ii.) Reverse triangle inequality: We have |a - b| = ||a| - |b||. We use again that $|x| = \sqrt{x^2}$:

$$|a-b| = \sqrt{(a-b)^2} = \sqrt{(|a|-|b|)^2} = ||a|-|b|| \Leftrightarrow a^2 + b^2 - 2ab = a^2 + b^2 - 2|a| \cdot |b|.$$

Hence again we have equality if $a \cdot b = |a| \cdot |b|$ or a and b have the same sign.

exercise 8.a) (2 points) Let n > 1 be a positive integer and $a_1, a_2, \ldots, a_n \in \mathbb{R}$ be real numbers. Show that

$$|\sum_{k=1}^{n} a_k| \le \sum_{k=1}^{n} |a_k|.$$

Solution: We use the triangle inequality several times:

$$\begin{aligned} |\sum_{k=1}^{n} a_{k}| &= |a_{1} + (\sum_{k=2}^{n} a_{k})| \stackrel{\Delta \neq}{\leq} |a_{1}| + |\sum_{k=2}^{n} a_{k}| = |a_{1}| + |a_{2} + (\sum_{k=3}^{n} a_{k})| \stackrel{\Delta \neq}{\leq} \\ |a_{1}| + |a_{2}| + |\sum_{k=3}^{n} a_{k}| \stackrel{\Delta \neq}{\leq} \dots \stackrel{\Delta \neq}{\leq} |a_{1}| + |a_{2}| \dots |a_{n}| = \sum_{k=1}^{n} |a_{k}|. \end{aligned}$$

exercise 20. (3 points) A ball has a bounce coefficient of 0.85. Suppose that the ball is dropped from a height of 10 feet. How far has it traveled when it hits the floor for the twelfth time?

Solution: We can make a table to see how far has traveled between the *n*-th and n+1-th touch.

Total: 20 points

Return date: Wednesday 01/17/18

drop	0-1	1-2	2-3	3-4	 11-12
dist. traveled	10	$2 \cdot 0.85 \cdot 10$	$2 \cdot 0.85^2 \cdot 10$	$2\cdot 0.85^3\cdot 10$	 $2\cdot 0.85^{11}\cdot 10$

In total the ball has traveled

$$10 + 2 \cdot 10 \cdot \sum_{k=1}^{11} (0.85)^k \stackrel{geom.sum}{=} 10 + 20 \cdot \frac{1 - (0.85)^{12}}{1 - 0.85} - 20 \simeq 104.37 \text{ ft.}$$

exercise 26. (4 points) Let x, y > 0 be two positive real numbers. For each of the following conditions on x and y find the maximum value for the product $x \cdot y$.

a) 4x + 9y = 36.

Solution: With Theorem 1.12 we have that

$$\frac{1}{2} \cdot (a_1 + a_2) \ge (a_1 \cdot a_2)^{\frac{1}{2}}$$

and equality occurs if and only if $a_1 = a_2$. Setting $a_1 = 4x$ and $a_2 = 9y$ we obtain

$$18 = \frac{36}{2} \stackrel{4x+9y=36}{=} \frac{1}{2} \cdot (4x+9y) \ge (4x \cdot 9y)^{\frac{1}{2}} = 6 \cdot (x \cdot y)^{\frac{1}{2}} \text{ hence } 9 \ge xy.$$

Furthermore equality is obtained if and only if $4x = a_1 = a_2 = 9y$. As 4x + 9y = 36 equality occurs for x = 4.5 and y = 2. For these values the maximum xy = 9 is attained.

b) $4x^2 + 9y^2 = 36.$

Solution: We use again that

$$\frac{1}{2} \cdot (a_1 + a_2) \ge (a_1 \cdot a_2)^{\frac{1}{2}}.$$

Setting $a_1 = 4x^2$ and $a_2 = 9y^2$ we obtain

$$18 = \frac{36}{2} \stackrel{4x^2 + 9y^2 = 36}{=} \frac{1}{2} \cdot \left(4x^2 + 9y^2\right) \ge \left(4x^2 \cdot 9y^2\right)^{\frac{1}{2}} = 6xy \text{ hence } \boxed{3 \ge xy}$$

Furthermore equality is obtained if and only if $4x^2 = a_1 = a_2 = 9y^2$. As $4x^2 + 9y^2 = 36$ equality occurs for $x = \sqrt{4.5}$ and $y = \sqrt{2}$. For these values the maximum xy = 3 is attained.

c) $4x^2 + 9y = 36$.

Solution: This is a bit trickier. This time we can not use the AM-GM inequality with two values. The trick is to use the inequality with three values instead:

$$\frac{1}{3} \cdot (a_1 + a_2 + a_3) \ge (a_1 \cdot a_2 \cdot a_3)^{\frac{1}{3}}.$$

Total: 20 points

Return date: Wednesday 01/17/18

Setting $a_1 = 4x^2$ and $a_2 = a_3 = 4.5 \cdot y$ we obtain

$$12 = \frac{1}{3} \cdot \left(4x^2 + 4.5 \cdot y + 4.5 \cdot y\right) \ge \left(4x^2 \cdot 4.5 \cdot y \cdot 4.5 \cdot y\right)^{\frac{1}{3}} = (9xy)^{\frac{2}{3}} \quad \text{hence} \quad \boxed{\frac{8\sqrt{3}}{3} \ge xy}.$$

Furthermore equality is obtained if and only if $4x^2 = a_1 = a_2 = a_3 = 4.5y$. This means that $x = \sqrt{3}$ and $y = \frac{8}{3}$. For these values the maximum $xy = \frac{8\sqrt{3}}{3}$ is attained.

exercise 34. (3 points) Let a_1, a_2, \ldots, a_n be real numbers. Show that

$$\sum_{k=1}^{n} |a_k| \le \left(n \cdot \sum_{k=1}^{n} a_k^2\right)^{\frac{1}{2}}.$$

Solution: We look at $\tilde{\mathbf{a}} = (|a_1|, |a_2|, \dots, |a_n|)$ and $\mathbf{b} = (1, 1, \dots, 1)$. Then the Cauchy-Schwarz inequality for $\tilde{\mathbf{a}}$ and \mathbf{b} gives us

$$\left(\sum_{k=1}^{n} |a_k|\right)^2 = |\mathbf{\tilde{a}} \bullet \mathbf{b}|^2 \le |\mathbf{\tilde{a}}|^2 \cdot |\mathbf{b}|^2 = \left(\sum_{k=1}^{n} a_k^2\right) \cdot n.$$

We obtain the above inequality by taking the root on both sides.