Total: 20 points

Return date: Wednesday 01/24/18

Chapter 1.3 and 1.4

keywords: infima and suprema, countable and uncountable sets

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.

exercise 10 (3 points) Prove that for the open interval (a, b) the infimum is a and the supremum is b.

Solution: We start with the supremum: We have to show that

1.) b is an upper bound of (a, b), i.e. $b \ge x$ for all $x \in (a, b)$.

2.) For every $\beta < b$ there is an $x \in (a, b)$, such that $\beta < x$.

1.) As $(a,b) = \{x \in \mathbb{R}, a < x < b\}$ we know that b is an upper bound for (a,b).

2.) It remains to show that for all $\beta < b$ we have that β is not an upper bound:

As $\beta < b$ we have that $b - \beta = \epsilon > 0$. By **Theorem 1.17.4** we know that there is a positive integer $n \in \mathbb{N}$, such that

$$\epsilon < \frac{1}{n} \Leftrightarrow -\epsilon < -\frac{1}{n}$$

Hence

$$\beta = b - (b - \beta) = b - \epsilon < b - \frac{1}{n} \in (a, b).$$

Hence there is an element $b - \frac{1}{n} \in (a, b)$, which is strictly greater than β . Therefore β can not be an upper bound. In total we conclude that b is the supremum of (a, b).

In a similar fashion it is clear that a is a lower bound. Furthermore by similar arguments as for the supremum any $\alpha > a$ can not be a lower bound for (a, b). Hence a is the infimum of (a, b).

exercise 16 (2 points) For Theorem 1.17. show that $1 \Rightarrow 2$. Recall:

Theorem 1.17. The following statements are equivalent:

- 1. If a, b > 0 then there is a positive integer $n \in \mathbb{N}$, such that $n \cdot a > b$.
- 2. The set \mathbb{N} of positive integers is not bounded above.
- 3. For each $x \in \mathbb{R}$ there is an integer $n \in \mathbb{Z}$, such that $n \leq x < n + 1$.
- 4. For each $x \in \mathbb{R}, x > 0$ there is a positive integer $n \in \mathbb{N}$, such that $\frac{1}{n} < x$.

Total: 20 points

Return date: Wednesday 01/24/18

Solution: 1. \Rightarrow 2.: By contradiction: Suppose \mathbb{N} is bounded from above. Then there is $b \in \mathbb{R}$, such that $m \geq b$ for all $m \in \mathbb{N}$. But by 1. with a = 1 there is $n \in \mathbb{N}$, such that $n \cdot 1 = n > b$, a contradiction.

exercise 25. (5 points) Show that each real number $x \in [0, 1]$ has a binary expansion.

Solution: Let $x \in [0,1]$. Let b_0 be the largest integer, such that $b_0 \leq x$. Clearly $b_0 \in \{0,1\}$. Let b_1 be the largest integer, such that

$$b_0 + \frac{b_1}{2} \le x \le 1.$$

Note that $b_1 \in \{0, 1\}$ as for $x \neq 1$ we have that $b_0 = 0$ and

$$b_0 + \frac{b_1}{2} \le x < 1$$
 hence $b_1 < 2$. (*)

Suppose that for some integer $n \ge 2$ integers $b_0, b_1, \ldots, b_{n-1}$ have been chosen this way. Let b_n be the largest integer, such that

$$b_0 + \frac{b_1}{2} + \frac{b_2}{2^2} + \ldots + \frac{b_n}{2^n} \le x \le 1.$$

We prove that $b_n \in \{0, 1\}$ by induction for $x \neq 1$ i.e. $b_0 = 0$.

- 1.) Induction start (n = 1): This was shown in (*).
- 2.) Induction step $(n \rightarrow n+1)$: We know that

 $b_k \in \{0,1\}$ for all $k \in \{1,2,\ldots,n\}$ (Induction hypothesis) (**)

We have to show that this is true for $k \in \{1, 2, ..., n+1\}$. By definition we have

$$\frac{b_1}{2} + \frac{b_2}{2^2} + \ldots + \frac{b_n}{2^n} + \frac{b_{n+1}}{2^{n+1}} \le x.$$

By definition b_n was the largest integer, such that $\sum_{k=1}^{n} \frac{b_k}{2^k} \leq x$. If $b_{n+1} \geq 2$ then this contradicts the fact that b_n is maximal. Hence $b_{n+1} < 2$. This proves our statement. \Box By induction we can define b_n for all integers $n \in \mathbb{N}$. We define the set of numbers

$$B := \{b_0 + \frac{b_1}{2} + \frac{b_2}{2^2} + \dots + \frac{b_n}{2^n}, n \in \mathbb{N} \cup \{0\}\} = \{b_0, b_0 + \frac{b_1}{2}, b_0 + \frac{b_1}{2^1} + \frac{b_2}{2^2}, \dots, \sum_{k=0}^n \frac{b_k}{2^k}, \dots\}$$

The set *B* has the upper bound *x* and by the Completeness Axiom this implies that a supremum $\sup(B) = \beta$ exists. Suppose $\beta < x$. Then by **Theorem 1.17.4** there is an $m \in \mathbb{N}$, such that

$$\frac{1}{2^m} \le \frac{1}{m} < x - \beta$$
 or $\beta + \frac{1}{2^m} < x$. (***)

Total: 20 points

Return date: Wednesday 01/24/18

By the maximality of b_m and as β is the supremum of B we have that:

$$x < \underbrace{b_0 + \frac{b_1}{2} + \frac{b_2}{2^2} + \ldots + \frac{b_m}{2^m}}_{\in B} + \frac{1}{2^m} \le \beta + \frac{1}{2^m} \overset{(***)}{<} x,$$

a contradiction. In other words

$$x = b_0, b_1 \ b_2 \ b_3 \dots b_n \dots = b_0 + \frac{b_1}{2^1} + \frac{b_2}{2^2} + \dots + \frac{b_n}{2^n} \dots$$

exercise 1. d), f) (3 points) For each pair of sets find a one-to-one correspondence between them.

d) [1,2] and [1,6]. **Solution:** $f: [1,2] \to [1,6], x \mapsto f(x) := 5(x-1) + 1 = 5x - 4$. The inverse map is $f^{-1}(x) = \frac{x+4}{5}$. We check that this is indeed the inverse map i.e.

$$f \circ f^{-1}(x) = x$$
 and $f^{-1} \circ f(x) = x$.

As f(1) = 1 and f(2) = 6 we have that f([1, 2]) = [1, 6].

f) \mathbb{R} and (0, 1).

Solution: $g: (0,1) \to \mathbb{R}, x \mapsto g(x) := \tan(\pi \cdot x - \frac{\pi}{2})$. We know that $\tan: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ is a strictly increasing function (derivative test). This implies that \tan is injective. As $\tan(-\frac{\pi}{2}) = -\infty$ and $\tan(\frac{\pi}{2}) = \infty$ the function is also surjective, hence bijective. By scaling and shifting this function we obtain $g: (0,1) \to \mathbb{R}$ (see below).

Total: 20 points

Return date: Wednesday 01/24/18

exercise 7. (3 points) Prove that union $A \uplus B$ of two disjoint countably infinite sets A and B is countably infinite by finding a one-to-one correspondence of the union with \mathbb{N} .

Solution: Let E^+ be the even positive integers and O^+ be the odd positive integers. Similar as in the examples from **Lecture 6** we can establish the one to one correspondences

$$E^+ \leftrightarrow \mathbb{N} \leftrightarrow A \text{ and } O^+ \leftrightarrow \mathbb{N} \leftrightarrow B.$$

Let $f: E^+ \to A$ and $g: O^+ \to B$ be the bijective maps between these sets. We set

$$h: \mathbb{N} = E^+ \uplus O^+ \to A \uplus B, n \to h(n) := \begin{cases} g(n) & \text{if } n \text{ odd} \\ f(n) & \text{if } n \text{ even} \end{cases}$$

Then h is a bijective map. This shows that $A \uplus B$ is countably infinite.

exercise 18. c) (4 points) Let A be the set of all countably infinite sequences of 0's and 1's.

Example: $1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, \dots$

Prove that $\mathcal{P}(\mathbb{N})$, the collection of all subsets of positive integers is uncountable by establishing a one-to-one correspondence between $\mathcal{P}(\mathbb{N})$ and A.

Solution: For each element S in $\mathcal{P}(\mathbb{N})$ we construct a binary sequence $(b_k^S)_{k\geq 1}$ in the following way. We set

$$b_k^S = \begin{cases} 1 & \text{if } k \in S \\ 0 & \text{if } k \notin S. \end{cases}$$

Then the map

$$f: \mathcal{P}(\mathbb{N}) \to A, S \mapsto f(S) := (b_k^S)_k$$

is a bijective map from $\mathcal{P}(\mathbb{N})$ to A.

In a same way as in the lecture for the numbers in [0, 1], we can use the diagonal argument to show that A is uncountable.

We can also argue that there is a surjective map from A to [0,1] by writing each real number in [0,1] with its binary expansion. By removing multiple mappings to elements in [0,1] we can find a subset B of A that is in one-to-one correspondence with [0,1]. This implies again that Ais uncoutable as it contains the uncountable set B.

Therefore, as A is uncountable, so is $\mathcal{P}(\mathbb{N})$.