
Math 35: Real analysis

Winter 2018 - Homework 7

Total: 20 points Return date: Wednesday 02/28/18

keywords: di�erentiation, properties of di�erentiable functions

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete
sentences and label any diagrams. Please show your work; no credit is given for solutions without
work or justi�cation.

Chapter 4.1

exercise 7 (2 points) Let f : (a, b) → R be a di�erentiable function and c ∈ (a, b). Show
that the sequence

(
n · (f(c+ 1

n)− f(c))
)
n
converges to f ′(c).

Solution: As the derivative is the limit of the function Fc(x) =
f(x)−f(c)

x−c at x = c we can use
the Sequence criterion for the derivative. The function f is di�erentiable at c if and only
if for any sequence (xn)n ⊂ (a, b)\{c}, such that

lim
n→∞

xn = c we have lim
n→∞

f(xn)− f(c)
xn − c

= L = f ′(c).

We take the sequence where xn = c+ 1
n . Then

lim
n→∞

c+
1

n
= c and lim

n→∞

f
(
c+ 1

n

)
− f(c)(

c+ 1
n

)
− c

= lim
n→∞

n · (f
(
c+

1

n

)
− f(c)) = L = f ′(c).

exercise 21. (3 points) Find, with proof, the values of each limit.

a) limx→0
sin(x)

x .
Solution: For f(x) = sin(x), g(x) = x, we have f(0) = sin(0) = 0 = g(0) and g(x) 6= 0 in
a neighborhood of x = 0. Hence we can apply L'Hôpital's rule and obtain:

lim
x→0

sin(x)

x
= lim

x→0

sin(x)′

x′
= lim

x→0

cos(x)

1
= cos(0) = 1 .

b) limx→0
cos(x)−1

x
Solution: Again (check the conditions) L'Hôpital's rule applies and obtain:

lim
x→0

cos(x)− 1

x
= lim

x→0

cos(x)′

x′
= lim

x→0

− sin(x)

1
= − sin(0) = 0 .

c) limx→0
sin(x)
tan(3x)

Solution: Again (check the conditions) by L'Hôpital's rule we obtain:

lim
x→0

sin(x)

tan(3x)
= lim

x→0

sin′(x)

tan′(3x)
= lim

x→0

cos(x)

3(1 + tan2(3x))
=

cos(0)

3(1 + tan2(3 · 0))
=

1

3
.
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Chapter 4.2

exercise 15 (2 points) Let [a, b] be an interval, such that a > 0. Consider the func-
tion f : [a, b] → R, x → f(x) = 1

x . Find the point c guaranteed by the Mean value

theorem. What is special about this point?

Solution: By the Mean value theorem there is a point c ∈ [a, b], such that

f ′(c) =
f(b)− f(a)

b− a
.

We know that for f(x) = 1
x we have to �nd the point c ∈ [a, b], such that

− 1

c2
= f ′(c) =

f(b)− f(a)
b− a

=
1
b −

1
a

b− a
=

(
a− b
ab

)
·
(

1

b− a

)
= − 1

ab
.

Hence, as 0 < a < b, we have that c =
√
ab .

This means that this point is the geometric mean of a and b.

exercise 17 (3 points) Use the Mean value theorem to show that

(1 + x)
1
2 < 1 +

x

2
for all x > 0.

Generalize this result to the function (1 + x)r, where r > 1.

Solution: We prove the general result for (1 + x)r, where r < 1. The function satis-
�es the premises of the theorem in the interval [0, x]. Hence we know that there is a point
c ∈ [0, x], such that

r · (1 + c)r−1 = f ′(c) =
f(x)− f(0)

x− 0
=

(1 + x)r − (1 + 0)r

x
=

(1 + x)r − 1

x

For r < 1 we have that g(c) = r · (1 + c)r−1 is a decreasing function on the interval [0, x].
Hence the maximum is attained at c = 0. We obtain (as c > 0):

(1 + x)r − 1

x
= r · (1 + c)r−1 < r · (1 + 0)r−1 = r ⇒ (1 + x)r < 1 + r · x.

As this inequality does not depend on the choice of x, it is true for all x > 0.



Math 35: Real analysis

Winter 2018 - Homework 7

Total: 20 points Return date: Wednesday 02/28/18

Lecture 21

Corollary 6 (2 points) Let f : [a, b] → R be a continuous function, such that f is di�eren-
tiable on (a, b), such that m ≤ f ′(c) ≤M for all c ∈ (a, b). Then

m · (y − x) ≤ f(y)− f(x) ≤M · (y − x) for all x, y ∈ (a, b), y > x.

proof By the Mean value theorem we know that for all x, y ∈ (a, b), y > x, there is c ∈
(x, y) ⊂ (a, b), such that

f ′(c) =
f(y)− f(x)

y − x
, where m ≤ f ′(c) ≤M.

Hence, as y > x⇔ y − x > 0 we have

m ≤ f(y)− f(x)
y − x

≤M ⇒ m · (y − x) ≤ f(y)− f(x) ≤M · (y − x).

This is true for all x, y ∈ [a, b], where y > x.

Theorem 8 (Cauchy's mean value theorem ) (3 points) Let f, g : [a, b] → R be two
continuous functions, such that f and g are di�erentiable on (a, b). Then there is a point
c ∈ (a, b), such that

f ′(c)

g′(c)
=
f(b)− f(a)
g(b)− g(a)

.

proof We apply Rolle's theorem to the function

h(x) = (f(b)− f(a)) · g(x)− (g(b)− g(a)) · f(x).

We check whether h(x) satis�es the conditions of Rolle's theorem. We have

h(a) = (f(b)− f(a)) · g(a)− (g(b)− g(a)) · f(a) = f(b)g(a)− f(a)g(b)
h(b) = (f(b)− f(a)) · g(b)− (g(b)− g(a)) · f(b) = −f(a)g(b) + f(b)g(a).

Hence h(a) = h(b) and by Rolle's theorem there is a point c ∈ (a, b), such that h′(c) = 0.
Therefore

0 = h′(c) = (f(b)− f(a)) · g′(c)− (g(b)− g(a)) · f ′(c)⇒
f ′(c)

g′(c)
=

f(b)− f(a)
g(b)− g(a)

.

This proves our theorem.
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Chapter 4.4

exercise 2a) (2 points) Find the limit if f is de�ned on (0, b) and di�erentiable only at c.

lim
x→c

f(x)− f(c)
x2 − c2

Solution: We can apply L'Hôpital's rule (check the conditions) and �nd

lim
x→c

f(x)− f(c)
x2 − c2

= lim
x→c

(f(x)− f(c))′

(x2 − c2)′
= lim

x→c

f ′(x)

2x
=
f ′(c)

2c
.

Lecture 22

Exercise 10 (3 points) Our aim is to show that

lim
n→∞

(
1 +

x

n

)n
= ex for all x ∈ R .

a) Show that for a �xed x ∈ R we have that

lim
y→0

ln(1 + x · y)
y

= x.

Solution: We apply L'Hôpital's rule (check the conditions) and obtain

lim
y→0

ln(1 + x · y)
y

= lim
y→0

ln(1 + x · y)′

y′
= lim

y→0

x

1 + xy
= x.

b) Use Ch. 4.1, exercise 7 to show that

lim
n→∞

(
1 +

x

n

)n
= ex

Solution: This is not exactly like Ch. 4.1, exercise 7 but very similar. By the sequence
criterion for the limit we know that for any sequence (yn)n ⊂ (−δ, δ)\{0}, such that

lim
n→∞

xn = 0 we have lim
n→∞

ln(1 + x · yn)
yn

= x.

We take the sequence yn = 1
n . Then

lim
n→∞

1

n
= 0 and lim

n→∞

ln(1 + x · 1n)
1
n

= lim
n→∞

n · (ln(1 + x

n
)) = x.
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Now
(
n · (ln(1 + x

n)
)
n

= (xn)n is a sequence that converges to x. By the continuity of the
exponential function ex this means that limn→∞ e

xn = ex. Hence

lim
n→∞

en·ln(1+
x
n
) = lim

n→∞
eln((1+

x
n
)n = lim

n→∞

(
1 +

x

n

)n
= ex.

This is true for all x ∈ R .

Alternative solution: a,b) We realize that the limit is the derivative of ln(1 + x · y) at y = 0:

lim
y→0

ln(1 + x · y)
y

= lim
y→0

ln(1 + x · y)− ln(1 + x · 0)
y − 0

= ln(1 + x · y)′
∣∣
y=0

=
x

1 + xy

∣∣
y=0

= x.

Then by Ch. 4.1, exercise 7 we have that

lim
y→0

ln(1 + x · y)
y

= lim
n→∞

n · (ln(1 + x

n
)− ln(1 + x · 0)︸ ︷︷ ︸

=0

) = x.

The result then follows as in the previous solution by applying the exponential function to both
sides.

c) Use part b) to show that

lim
n→∞

(
1− x

n2

)n
= 1.

Solution: We know that (for x > 0) we have that(
1− x

n2

)
=

(
1 +

√
x

n

)
·
(
1−
√
x

n

)
=

(
1 +

√
x

n

)
·
(
1 +

(−
√
x)

n

)
.

Hence by the limit laws

lim
n→∞

(
1− x

n2

)n
= lim

n→∞

(
1 +

√
x

n

)n

· lim
n→∞

(
1 +

(−
√
x)

n

)n

= e
√
x · e−

√
x = 1.


